Status of thermal compensation in Virgo

Roma Tor Vergata

LIGO-G070350-00-Z

Thermal Lensing

• Observed in Virgo through reduction of the sidebands gain.

Building and validating the FE model

A. Rocchi - 24.05.2007 LSC-Virgo Meeting

- DRUM MODE
- ANSYS FEM f= 5584.15 Hz
- Experimental value f= 5584.7 Hz

Difference is 0.55Hz less than 0.01%

Evaluating the losses of the ITMs

Red and blue curves experimental frequency shifts

green and pink FEM results

ITMs effective losses

Thermal Lensing

Current Thermal lensing

0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16

Radial distance (m)

----- OPL - WI

Parameters as in R. Flaminio VIR-NOT-EGO-1390-324

UNIVERSITA' degli STUDI di ROMA T O R V È R G A T A

0

-20

-40

-60

-80

-100

0

OPL variation (nm)

TL Compensation

- Different solutions already investigated (LIGO):
 - Heating ring
 - Shielded heating ring
 - CO₂ laser
- Proposed TCS for Virgo+: annular heating of ITMs with dc CO₂ laser

Desirable properties:

- It is easily adaptable as new understanding of the ITF is realized
- It does not require a significant vacuum incursion to install as this would lead to significant down time to the instrument
- "Annular" profile
 - from simulations: reasonable parameters to compensate inner radius~2.5 cm, outer radius~14 cm

TCS Power requirements

Virgo now on WI mirror (losses 7.70ppm)	~1.8 W
Virgo (nominal losses)	~0.4 W
Virgo+ (G _{rec} =19) (nominal losses)	~1.5 W
Virgo+ (G _{rec} =35) (nominal losses)	~2.8 W

Noise budget

Evaluation of TCS noise injected in Virgo+, if RIN is stabilized @ 3×10^{-7} / \sqrt{Hz} .

All sources taken into account.

How to reduce TCS noise

1. The obvious: reduce RIN

How to reduce TCS noise

- 1. The obvious: reduce RIN
- 2. Shine both ITMs with the same laser
 - Noise cancellation is complete only if the power injected on the ITMs is exactly the same

How to reduce TCS noise

- 1. The obvious: reduce RIN
- 2. Shine both ITMs with the same laser
 - Noise cancellation is complete only if the power injected on the ITMs is exactly the same

Noise reduction

A. Rocchi - 24.05.2007 LSC-Virgo Meeting

A. Rocchi - 24.05.2007 LSC-Virgo Meeting

NFN

di Fisica Nuclear

UNIVERSITA' degli STUDI di ROMA TOR VERGATA

No change in the quality of the compensation

A. Rocchi - 24.05.2007 LSC-Virgo Meeting

((O))/VIRGD

Reaction mass temperature field

Front heating

Front & back heating

Virgo path toward TCS

Possible strategy for TCS implementation:

•First step:

-Install TCS on Virgo after the Science Run

-Time scale: system ready by December 2007/January 2008

•Second step:

-TCS for Virgo+, stabilized CO₂ laser, improved projector(?)

-Time scale: TCS ready by half 2008

