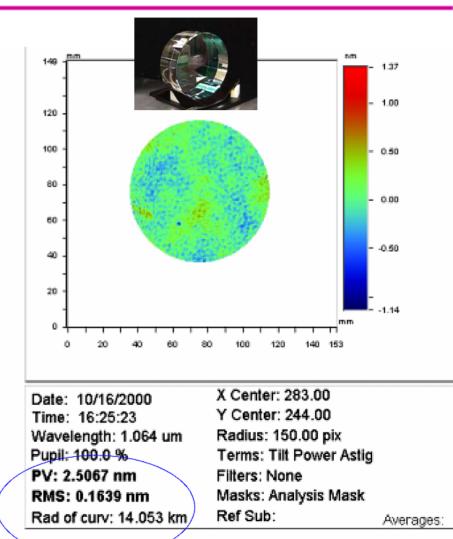


G070380-00-Z

Optics for Interferometers for Ground-based Detectors

DFG-NSF Astrophysics Workshop 10-12 Jun 2007

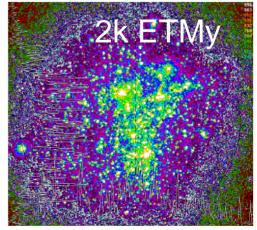
Outline


- Optics in the current LIGO detectors
 - » Requirements and performance
 - » Thermal effects in LIGO
 - Optics for Advanced LIGO
 - » Requirements
 - » The importance of optical coatings
 - » Thermal effects in Advanced LIGO
 - Test masses and interferometer components
 - Ancillary transmissive optical components
 - Some thoughts on optics for third generation terrestrial detectors
 - » Substrate materials and masses
 - » Reflective optics and cryogenics

LIGO

UF FLORIDA Requirements LIGO and performance in LIGO Optics

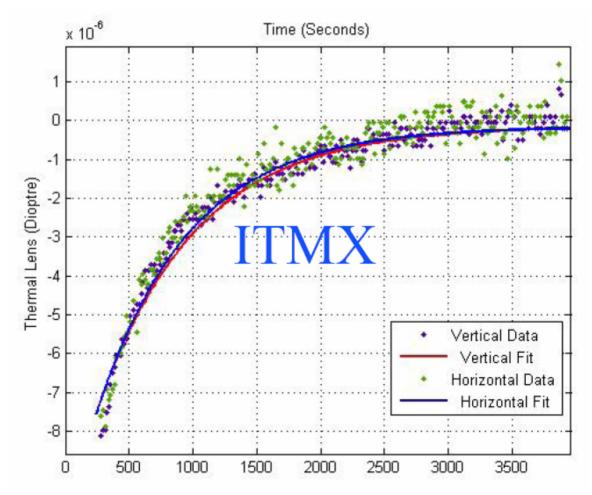
- Initial LIGO detectors had challenging requirements for test mass mirrors
 - Mass: 11 kg; Physical dimensions: ϕ **》** = 250 mm, d = 100 mm
 - » Surface Figure: $\sim \lambda / 1000$
 - » Microroughness: 0.6 nm rms
 - Coating Absorption: ~ 1 ppm **》**
 - Bulk Absorption: < 10 ppm **》**
 - Surface Scattering: 50 ppm **》**
- At or beyond state-of-the-art at the time of beginning initial LIGO
 - Metrology was a significant challenge


Performance: Cleanliness is next to...

G070380-00-Z

- So how did we do?
 - » Bulk Absorption:
 - 2 ppm/cm 10 ppm/cm; varies with individual mirror
 - » Coating absorption:
 - 1 5 ppm; varies with individual mirror
 - » Scatter loss (arm cavity):
 - 70 ppm; also a bit variable
- Impact on performance
 - Thermal compensation system developed to combat variable absorption
 - » In situ cleaning of the some of the 'dirtiest' test mass mirrors
 - in one case, a mirror was replaced due to a defective AR coating; likely the result of cleaning which etched AR coating

Resonant arm, Gaussian illuminated ETM

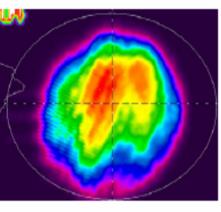


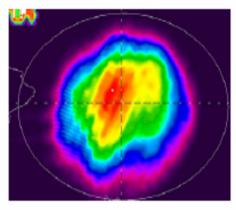
Thermal effects **UF FLORIDA** in LIGO optical components

- 'High quality low absorption fused silica substrates'
 - » Heraeus 312 (ITM)

LIGO

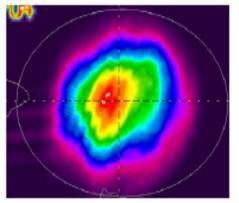
- » All mirrors are different
- ~100 mW absorption in current LIGO interferometers
 - » Effects are noticeable: Unstable recycling cavity
- Requires *adaptive* control of optical wavefronts
 - Thermal compensation system (TCS)

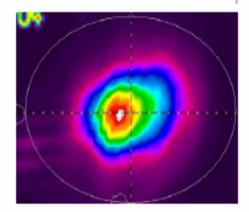



Thermal compensation

G070380-00-Z

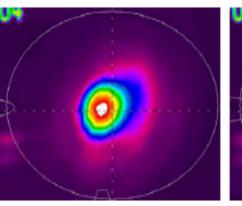
RF sidebands-

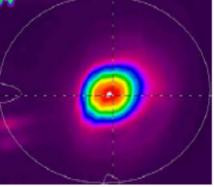

LIGO

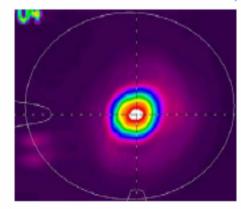


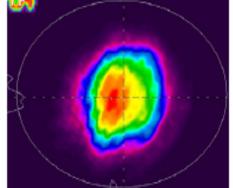
30 mW

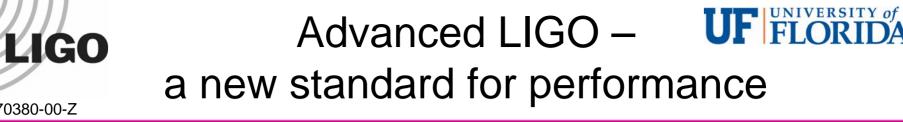
60 mW




no heating


RF sidebands-





120 mW

150 mW

180 mW

(thru unlocked IFO)

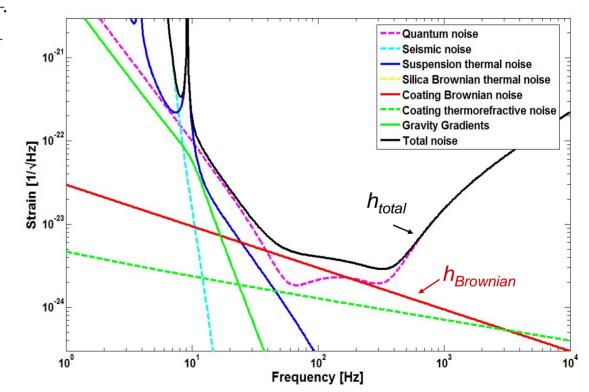
- All requirements are tougher than initial LIGO
 - Mass: 40 kg; Physical dimensions: ϕ = 340 mm, d = 200 mm **》**
 - Surface Figure: $\sim \lambda/1200$ **》**
 - Microroughness: 0.1 nm (rms) **》**
 - Bulk Homogeneity: 20 nm (p-v) **》**
 - Coating Absorption: < 1 ppm **》**
 - Bulk Absorption: < 3.5 ppm **》**
 - Arm Cavity Scatter loss: 20 ppm **》**

- Thermal effects are more severe in AdvLIGO
 - » ~ 1 W absorbed power into input test masses
 - » Affects interferometer architecture
 - Stability of recycling cavity is problematic

Coating thermal noise

• Advanced LIGO performance is limited by *Brownian thermal* noise of the mirror coatings

$$h_{Brownian} = \sqrt{2k_B T \phi_{eff}} \frac{1 - \sigma^2}{\pi^3 f w Y}$$


• Effort under

LIGO

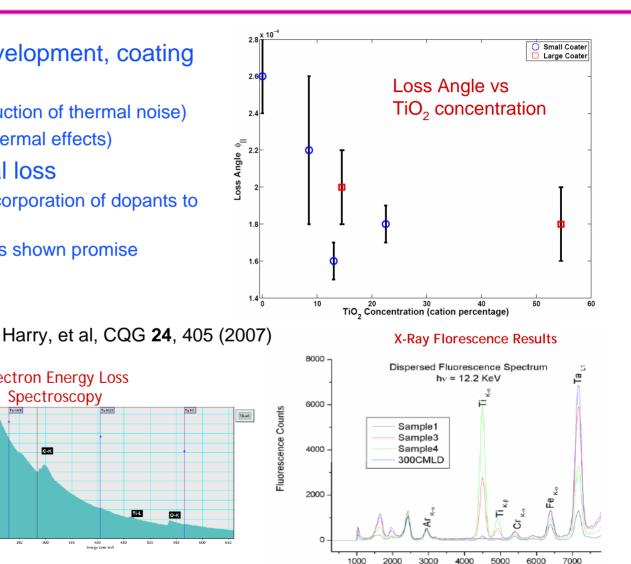
G070380-00-Z

way to develop better coatings for Advanced LIGO

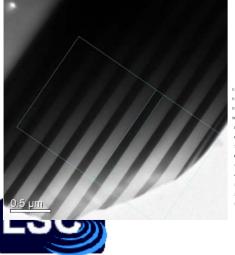
» 30% reduction in
Brownian coating noise
via doping of HR
coatings with TiO₂

Coating research and development

Efforts in coating development, coating characterization


- Mechanical loss (reduction of thermal noise) **》**
- Optical absorption (thermal effects) **》**
- Focus on mechanical loss
 - Efforts focused on incorporation of dopants to » relieve coating stress

Electron Energy Loss


Spectroscopy

с-к

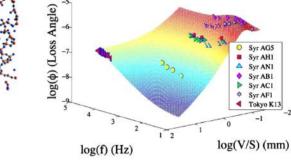
 TiO_2 -doped Ta_2O_5 has shown promise

Energy (eV)

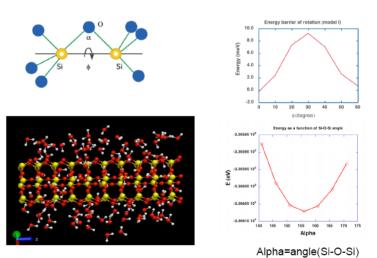
LIGO

G070380-00-Z

DFG-NSF Astrophysics Workshop 10-12 Jun 2007

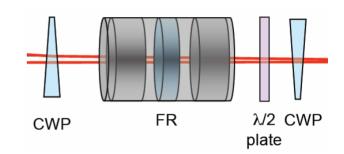

0-К

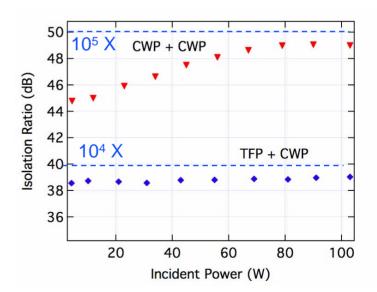
Microscopic **UF** mechanisms of mechanical loss


Goal: A description of mechanical loss in thin film amorphous oxides

- Molecular dynamics calculations beginning at University of Florida
- Have a working semi-empirical model of loss in fused silica
 - » Frequency dependence from two level systems
 - » Surface loss as observed phenomenon
- Develop full molecular description of silica loss
 - » Surface loss caused by two-member rings?
- Generalize to other amorphous oxides analogous two level systems

Quantum calculations of silica

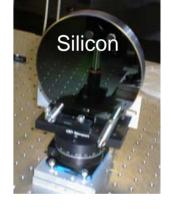



G070380-00-Z

LIGO

Ancillary optical **UF FLORIDA** components for next generation detectors

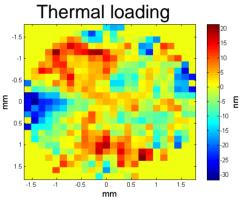
- Modulators and Faraday isolators also impacted by absorption of laser radiation
 - » Modulators:
 - thermal lensing
 - Nonlinear frequency conversion
 - Degradation due to long term exposure
 - » Faraday isolators
 - Thermal lensing
 - Thermally-induced depolarization
 - dV/dt
 - Photo-elastic effect
 - In-vacuum performance
- For Advanced LIGO
 - » Modulators use new EO materials RTP
 - See V. Quetschke poster
 - » Faraday isolator
 - Two TGG crystal design for birefringence compenation
 - Negative dn/dT material for passive thermal lensing compensation


Strd generation detectors: materials and masses

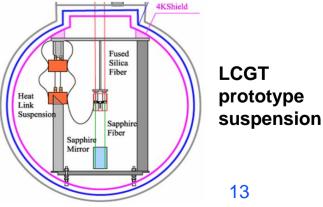
- For third generation detectors, we want
 - » Test masses with more mass (100 kg or more)
 - Standard quantum limit:

$$h_{SQL}(f) = \sqrt{\frac{8\hbar}{4\pi^2 f^2 L^2 M}} \longrightarrow \frac{1}{h^3} \sim M^{3/2}$$

- » Better material properties
 - Improved Brownian and thermo-elastic noise performance
 - High thermal conductivity κ ; low thermal expansion
 - Able to produce large masses (with high homogeneity)
- » Candidate materials
 - Sapphire
 - Low Brownian noise
 - » Higher thermo-elastic noise
 - Good *k*
 - We know a lot about it
 - » Studied extensively for Advanced LIGO before fused silica was selected
 - Silicon
 - High κ
 - Large masses
 - thermal noise comparable to sapphire at room temperature



LIGO detectors: reflective optics and cryogenics


• All reflective optical configurations

- » Diffraction gratings Byer Group, Stanford; Schnabel Group, Hannover
 - Minimize thermal loading due to substrate absorption
 - R&D in the following areas
 - Efficiency
 - Aperture size
 - Thermal effects
 - Scatter loss
 - Contamination

- » Total internal reflection Braginsky Group, Moscow State
 - Eliminate coatings \rightarrow eliminate coating thermal noise
 - Substrate absorption
- » Cryogenic test masses LCGT, Japan
 - Reduce thermal noise directly at the source
 - Heat extraction, vibration coupling

Conclusions

LIGO

• First generation gravitational wave detectors

- » LIGO, GEO, Virgo
- » Optics worked well for the most part!
 - Need for some mitigation after installation
 - Develop understanding of importance of mirror variability, surface contamination

• Second generation detectors

- » Advanced LIGO, Advanced Virgo, GEO-HF
- » Lots of R&D already done
 - Fused silica mirrors
 - Optical coatings limit performance

• Third generation detectors

- » Einstein GW telescope
 - Still lots of work needed to select optimum
 - Materials
 - Gratings?
 - Cryogenics?

