

Reducing False Alarms in Searches for Gravitational Waves from Coalescing Binary Systems

Andrés C. Rodríguez Louisiana State University M.S. Thesis Defense Thesis Advisor: Professor Gabriela González 6.20.07 LIGO-G070394-00-Z

Outline

- LIGO
- Sources of Gravitational Waves
- Data Analysis for Coalescing Binary Systems
- Methods to Reduce False Alarms χ^2 Veto, r² Test
- LIGO S3 Primordial Black Hole Search
- Conclusions

Laser Interferometer Gravitational Wave Observatory (LIGO)

Improved Sensitivity, LIGO Science Runs

Sources of Gravitational Waves

Crab pulsar (NASA, Chandra Observatory)

- *periodic signals*: pulsars
- *burst signals*: supernovae, gamma ray bursts

• *stochastic background*: early universe, unresolved sources

Supernova 1987A Ring:

NASA, WMAP

• *compact binary coalescing (CBC) systems*: neutron stars, black holes

- General Relativity predicts the decay of the binary orbit due to the emission of gravitational radiation.
- Waveforms can be well approximated by 2nd order post-Newtonian expansion.

Non -spinning waveforms parameterized by:

- » masses: m_1, m_2 , total mass M, or reduced mass μ
- » orbital phase ϕ & orientation ι
- » position in the sky: θ , ϕ

 $h(t) = F_{+}h_{+}(t) + F_{\times}h_{\times}$

(t)

$$F_{+} = -\frac{1}{2}(1 + \cos^{2}\theta)\cos 2\phi$$

 $F_{\times} = \cos\theta\sin 2\phi$

$$h_{+}(t) = \frac{1 + \cos^{2}\iota}{2} \left(\frac{G\mathcal{M}}{c^{2}D}\right) \left(\frac{t_{c} - t}{5G\mathcal{M}/c^{3}}\right)^{1/4} \times \cos\iota[2\phi_{c} - 2\phi\left(t - t_{c};\mathcal{M},\mu\right)]$$

$$h_{ imes}(t) = \cos \iota \left(rac{G\mathcal{M}}{c^2 D}
ight) \left(rac{t_c - t}{5G\mathcal{M}/c^3}
ight)^{1/4} imes \sin \iota [2\phi_c - 2\phi \left(t - t_c; \mathcal{M}, \mu
ight)]$$

• Effective Distance:

$$D_{\rm eff} = \frac{D}{\sqrt{F_+^2 (1 + \cos^2 \iota)^2 / 4 + F_\times^2 (\cos \iota)^2}}$$

• Chirp Mass:
$$\mathcal{M} = rac{(m_1m_2)^{3/5}}{(m_1+m_2)^{1/5}}$$

• Symmetric Mass ratio η :

$$\eta=rac{m_1m_2}{(m_1+m_2)^2}=rac{\mu}{\mathcal{M}}$$

Matched Filtering

• Data stream searched using matched filtering between data & template waveform: s(t) = n(t) + h(t)

Effective Distance:

• Matched Filter: $z(t)=4\int_0^\infty rac{ ilde{h}^*(f) ilde{s}(f)}{S_{
m n}(f)}\,e^{2\pi i ft}df$

$$D_{ ext{eff}} = (1 ext{Mpc}) rac{\sigma}{
ho}$$

Characteristic Amplitude:

$$\sigma^2 = 4 \int_0^\infty \frac{|\tilde{h}(f)|^2}{S(f)} df$$

- Signal to Noise Ratio (SNR): $\rho(t) = \frac{|z(t)|}{\sigma}$
- Inspiral Trigger: $ho = rac{|z_{\max}|}{\sigma} \quad \& \quad
 ho >
 ho^*$

- Data Collection
- Template Bank Generation: h(f)
- Matched Filter I: z(t), ρ (t), ask $\rho > \rho^*$
- 1st Coincidence (time, η , M_c)
- Matched Filter 2: χ^2 , r² Test
- 2nd Coincidence (time, η , M_c)
- Follow Up

$$\chi^2(t) = p \sum_{i=1}^p |
ho_i(t) -
ho(t)/p|^2$$

 $\xi^2 = rac{\chi^2}{p+\delta
ho^2}$

Inspiral Trigger:

6.20.07

Simulated Waveform vs False Alarm

Methods to Reduce False Alarms II: r² Test

- Use the r² time series (χ^2/p) as a method to search for excess noise.
- Impose a higher r² threshold (r^{*2}) than the search employs.
- 15 ∆t = 0.9 sec χ²/p » Count the number of Δt* time samples (Δt) above r^{*2} in a time 10 interval (Δt_*) before value inferred coalescence **ξ***2 -3.5 6.20.07 -3 -0.50 0.5 -2.5inferred coalescence time (s)

Methods to Reduce False Alarms II r² Test Result: S4 BNS Search

r² Test Results:

Searches performed by CBC Group in the LSC

r² Test Results for LIGO CBC Searches

	r ² veto version	Falsely Dismissed Injections (%)	Vetoed False Alarms (%)
S3BNS	1	0.001	43.0
S3PBH	1	0.0	26.5
S4BNS	1	0.0	35.0
S4PBH	1	0.0	35.0
S5BNS (epoch 1)	2	0.001	26.9
S5BBH (epoch 1)	2	0.12	19.1

 r² test is included in current LIGO searches: S5 Low Mass (M < 35M_{SOL}) 1 year

S3 Primordial Black Hole (PBH) Search I

- Black hole composed with mass < 1.0 $\rm M_{SOL}\,$ is believed to be a primordial black hole (PBH).
- They are compact objects may have formed in the early, highly compressed stages of the universe immediately following the big bang.
- Speculated to be part of the galactic halo or constituent of dark matter (small fraction).
- Binary system composed of two PBH's will emit gravitational waves that may be detectable by LIGO.
- A PBH binary composed of 2 x 0.35 $\rm M_{SOL}$ objects would have a coalescence frequency of 2023Hz and would spend about 22 seconds in LIGO's sensitive band.

S3 PBH Search II

• Target Sources:

$m_{ m min}(M_{\odot})$	$m_{ m max}(M_{\odot})$	$f_L({ m Hz})$	$N_{ m b}$	$D_{\rm max}({ m s})$
0.35	1.0	100	4500	22.1

S3: October 3 - January 09: 2004

	S3
H1-H2-L1 times	184 (167) hrs
H1-H2 times	604 (548) hrs
Total times	788 (715) hrs

* Numbers in () represent time left after data used for tuning search.

S3 PBH Search III - Tuning

Coincidence Windows

$$\eta = rac{m_1m_2}{(m_1+m_2)^2} \qquad {\cal M} = rac{(m_1m_2)^{3/5}}{(m_1+m_2)^{1/5}}$$

• H1H2 Effective Distance Cut

$$\frac{|\mathrm{H1}D_{\mathrm{eff}} - \mathrm{H2}D_{\mathrm{eff}}|}{\mathrm{H1}D_{\mathrm{eff}}} < \kappa \qquad , \ \kappa = 0.45$$

• Parameters Selected:

ΔT (milliseconds)	$\Delta \mathcal{M}_c (M_{\odot})$	$\Delta \eta$
4×2	0.002×2	0.06

S3 PBH Search IV - Tuning

• Effective SNR:

$$ho_{ ext{eff}}^2 = rac{
ho^2}{\sqrt{\left(rac{\chi^2}{2 ext{p}-2}
ight)\left(1+rac{
ho^2}{250}
ight)}},$$

• Combined SNR:

$$(
ho_c)^2_{
m PBH} = \sum_i^N
ho^2_{
m eff,i}$$

S3 PBH Search V: Result

- No triple coincident foreground candidate events or background events were found.
- Number of double coincidences found (▲) consistent with measured background (+).

Conclusions

- r² test greatly reduces rate of false alarms in LIGO CBC searches.
- The r² test be incorporated into future LIGO searches: S5 Low Mass (M < 35M_{SOL}) 1 year.
- A search for primordial black hole binary systems $(M < 1M_{SOL})$ in LIGO's S3 run was performed with results consistent with measured background.

Thank You!

Prof. Gabriela González

Thesis Committee: Prof. James Matthews, Prof. David Young, Prof. Jorge Pullin

LSU-LIGO Group: Chad, Ravi, Rupal, Prof. Warren Johnson, Jake, Dr. Myungkee Sung, Prof. Joseph Giaime, Shyang, Andy W., Jeff, Dr. Romain Gouaty

CBC Group: Dr. Duncan Brown, Dr. Stephen Fairhurst, Dr. Eirini Messaritaki, Prof. Patrick Brady, Dr. Alexander Dietz, Drew Keppel

LSC: Prof. Peter Shawhan, Prof. Alan Weinstein, Prof. Laura Cadonati, Dr. John Whelan, Prof. Vicky Kalogera, Dr. Bill Kells

LSC and CBC Group for access to LIGO data

LSU Dept. of Physics & Astronomy, NSF, Alfred P. Sloan Foundation

This research has been supported by National Science Foundation grants: PHY-0135389, PHY-0355289.

Extra Slides

BNS Waveform

PBH Waveform

BBH Waveform

SNR

\xi^2

Injection

Injection vs Trigger

r² test

r² example

r^2 - S3 BNS

r^2 - S3 PBH

r^2 - S4 BNS

r² - S4 PBH

r² - S5 BBH epoch 1

Effective SNR - S3 PBH

