Ground based Gravitational Wave Interferometers

Peter Fritschel, MIT (on behalf of the LIGO Scientific Collaboration)

DFG-NSF Astrophysics Research Conference Advanced Photonics in Application to Astrophysical Problems

Basics of GW Detection

- Gravitational Waves "Ripples in space-time"
- Stretch and squeeze the space transverse to direction of propagation

Example: Ring of test masses responding to wave propagating along z

GW strain =
$$h = \frac{\Delta L}{L}$$

Strength of GWs: Neutron Star Binary in the Virgo cluster • Gravitational wave amplitude (strain) $h_{\mu\nu} = \frac{2G}{c^4 r} \ddot{I}_{\mu\nu} \Rightarrow h \approx \frac{4\pi^2 GMR^2 f_{orb}^2}{c^4 r}$

Inspiral Range: distance at which an NS-NS inspiral would produce an SNR = 8 signal, averaged over source directions and geometry

First generation interferometers

LIGO VIRGO TAMA GEO

Global network of detectors

GW detector at a glance

Seismic motion -ground motion due to natural and anthropogenic sources

 $L \sim 4 \text{ km}$ For $h \sim 10^{-21}$ $\Delta L \sim 10^{-18} \text{ m}$

Optical Configuration

Initial LIGO Sensitivity Goal

- Strain sensitivity: 10⁻²¹-rms in a 100 Hz bandwidth
- Instrument strain noise density: 3x10⁻²³ /Hz^{1/2} at 150 Hz
- Displacement Noise
 - Seismic motion
 - Thermal Noise
 - Radiation Pressure
- Sensing Noise
 - Photon Shot Noise
 - Residual Gas
- Facilities limits much lower

Gravitational-wave searches Instruments and data

Meeting the experimental challenge

After 5 years of intense effort to reduce noise by orders of magnitude, the design sensitivity predicted in the 1995 LIGO Science Requirements Document was reached in 2005!

LIGO, Virgo & GEO sensitivities

Astrophysical searches

- **Fransien**
- Coalescence of binary compact objects (neutron stars, black holes, primordial BH)
- Core collapse supernovae
- Black hole normal mode oscillations
- Neutron star rotational instabilities
- Gamma ray bursts
- Cosmic string cusps

Modeled & Unmodeled waveforms

High duty cycle

- Periodic emission from pulsars
- (esp. accretion driven)
- Stochastic background (incoherent sum of many sources or very early universe)
- Expect the unexpected!

Sampling of current GW searches Pulsars

Search for GWs from known pulsars

Pulsar timings provided by the Jodrell Bank pulsar group

Sampling of current GW searches Binary Inspirals

Search for Binary Inspirals

Sources

- Binary neutron stars (~1 3 M_{sun})
- Binary black holes (< 30 M_{sun})
- Neutron star-black hole pair (potential source of short-hard gamma ray bursters)

Search method

Look for "chirps"

In the absence of detection, we establish a limit on the rate at which stars are coalescing in galaxies like our own

Binary inspirals: LIGO 55 data

- 3 months of data analyzed- no signals seen
- For 1.4-1.4 M_{sun} binaries, ~ 200 MWEGs in range
- For 5-5 M_{sun} binaries, ~ 1000 MWEGs in range
- Plot- Inspiral horizon for equal mass binaries vs. total mass (horizon=range at peak of antenna pattern=2.3 x antenna pattern average)

Sampling of current GW searches Stochastic Background

Cosmological GW Background

Predictions and Limits

Other GW searches

Transient or "burst' events

Gravitational-Wave Bursts

- Expected from very energetic catastrophic cosmic events involving solar-mass (1-100 M_o) compact objects
 - Core-collapse supernovae
 - Accreting and merging black holes
 - Gamma-ray burst engines
 - Other ... ???

GW Burst Sensitivity

What's the minimum total energy emission in GWs from a given distance that we could detect?

Assuming isotropic energy emission, concentrated in frequency around 150 Hz:

From the Galactic center: 3 x 10⁻⁸ M_{sun}c²
 From the Virgo galaxy cluster: 0.1 M_{sun}c²

Better detectors are on the way ...

Enhanced LIGO Advanced LIGO

Initial LIGO - Sept 15 2006

Input laser power ~ 6 W

Circulating

power

~ 20 kW

Initial LIGO 10⁻²¹ Strain (Hz^{-1/2}) 01 82 10⁻²³L 10⁻²⁴L 10³ 10² 10⁴ **10**¹ Frequency (Hz)

Mirror mass 10 kg

Enhanced LIGO

Input laser power ~ 30 W

Circulating power ~ 100 kW

Mirror mass 10 kg

Advanced LIGO

Input laser power > 100 W

Circulating power > 0.5 MW

Mirror mass 40 kg

Advanced LIGO Target Sensitivity

How will we get there?

- Seismic noise
 - Active isolation system
 - Mirrors suspended as fourth (!!) stage of quadruple pendulums
- Thermal noise
 - Suspension
 → fused silica fibers
 - Test mass > more massive; better coatings
- Optical noise
 - Laser power → increase to ~200 W
 - Optimize interferometer response
 > signal recycling

Seismic Noise

Signal-recycled Interferometer

Cavity forms compound output coupler with complex reflectivity. Peak response tuned by changing position of SRM

signal

125 W

Signal Recycling Reflects GW photons back into interferometer to accrue more phase

Advance LIGO Sensitivity: Improved and Tunable

In closing...

- LIGO interferometers are operating at design sensitivity & collecting 1 year of data
- Joint running & searches with partner observatories in Europe and Japan
- Planned enhancements that give 2x improvement in strain sensitivity underway
- Advanced LIGO approved by the NSB
 - US Construction funding expected to begin in FY2008
 - European partners are contributing significant components
 - Germany: Pre-stabilized, high power laser
 - UK: Test Mass suspensions