

LIGO, on the threshold of Gravitational Wave Astronomy

Stan Whitcomb (for the LIGO Scientific Collaboration)
Seminar at CSIRO Division of Industrial Physics
Lindfield, Sydney
11 July 2007

LIGO Scientific Collaboration LSC

LIGO

Gravitational Astronomy

- •The Univ. of Adelaide
- Andrews University
- The Australian National Univ.
- •The University of Birmingham
- California Inst. of Technology
- Cardiff University
- Carleton College
- •Charles Stuart Univ.
- Columbia University
- •Embry Riddle Aeronautical Univ.
- •Eötvös Loránd University
- University of Florida
- •German/British Collaboration for the PENNSTATE

Detection of Gravitational Waves

- University of Glasgow
- •Goddard Space Flight Center
- •Leibniz Universität Hannover
- •Hobart & William Smith Colleges
- •Inst. of Applied Physics of the **Russian Academy of Sciences**
- Polish Academy of Sciences
- •India Inter-University Centre for Astronomy and Astrophysics
- •Louisiana State University
- Louisiana Tech University
- •Loyola University New Orleans
- ·University of Manyland

San José State

WASHINGTON

TRINITY

ROCHESTER

UNIVERSITY of WISCONSIN

UMMILWAUKEE

- •University of Michigan
- •Massachusetts Inst. of Technology
- Monash University
- •Montana State University
- Moscow State University
- National Astronomical **Observatory of Japan**
- •Northwestern University
- University of Oregon
- •Pennsylvania State University
- •Rochester Inst. of Technology
- •Rutherford Appleton Lab
- University of Rochester
- •San Jose State University
- •Univ. of Sannio at Benevento, and Univ. of Salerno
- University of Sheffield
- University of Southampton
- •Southeastern Louisiana Univ.
- •Southern Univ. and A&M College
- Stanford University
- University of Strathclyde
- Svracuse University
- •Univ. of Texas at Austin
- •Univ. of Texas at Brownsville
- Trinity University
- •Universitat de les Illes Balears
- Univ. of Massachusetts Amherst.
- •University of Western Australia
- •Univ. of Wisconsin-Milwaukee
- •Washington State University
- •Universit--University

THE UNIVERSITY OF ADELAIDE

of Southampton

UNIVERSITY OF

WASHINGTON STATE

I INIVERSITY

R·I·T

Outline of Talk

- Quick Review of GW Physics
- LIGO Detector Overview
 - » Performance Goals
 - » How do they work?
 - » What do the parts look like?
- Early Results
- Global Network
- Advanced LIGO Detectors
 - » New challenges

gravitational radiation binary inspiral of compact objects (blackholes or neutron stars)

Gravitational Waves

- Einstein (in 1916 and 1918) recognized gravitational waves in his theory of General Relativity
 - » Necessary consequence of Special Relativity with its finite speed for information transfer
 - » Most distinctive departure from Newtonian theory
- Time-dependent distortions of space-time created by the acceleration of masses
 - » Propagate away from the sources at the speed of light
 - » Pure transverse waves
 - » Two orthogonal polarizations

$$h = \Delta L/L$$

Evidence for Gravitational Waves: Neutron Star Binary PSR1913+16

- Discovered by Hulse and Taylor in 1975
- Unprecedented laboratory for studying gravity
 - » Extremely stable spin rate
- Possible to repeat classical tests of relativity (bending of "starlight", advance of "perihelion", etc.

- After correcting for all known relativistic effects, observe loss of orbital energy
- => Emission of GWs

Astrophysical Sources of GWs

ped

- Compact binary inspiral: "chirps"
 - » NS-NS binaries well understood
 - » BH-BH binaries need further calculation, spin
 - » Search technique: matched templates
- Supernovas or GRBs: "bursts"
 - » GW signals observed in coincidence with EM or neutrino detectors
 - » Prompt alarm for supernova? (~1 hour?)
- Pulsars in our galaxy: "periodic waves"
 - » Search for observed neutron stars (frequency, doppler shift known)
 - » All sky search (unknown sources) computationally challenging
 - » Bumps? r-modes? superfluid hyperons?
- Cosmological: "stochastic background"
 - » Probing the universe back to the Planck time (10⁻⁴³ s)

Spin onto precesses with frequency F.

Short Gamma Ray Bursts (GRBs)

- GRBs: long-standing puzzle in astrophysics
 - » Short, intense bursts of gamma rays
 - » Isotropic distribution

"Long" GRBs identified with type II (or Ic) supernovae

in 1998

 "Short" GRBs hypothesized as NS-NS or NS-BH collisions/mergers

 Inability to identify host galaxies left many questions

First Identification from SWIFT GRB050509b (May 9, 2005)

- Near edge of large elliptical galaxy (z = 0.225)
- Apparent distance from center of galaxy = 35 kpc
- Strong support for inspiral/merger hypothesis

Using Gravitational Waves to Learn about Short GRBs

Chirp Signal binary inspiral

Chirp parameters give:

- Masses of the two bodies (NS, BH)
- Distance from the earth
- Orientation of orbit
- Beaming of gamma rays (with enough observed systems)

Detecting GWs with Interferometry

Suspended mirrors act as "freely-falling" test masses (in horizontal plane) for frequencies f >> f_{pend}

Terrestrial detector For $h \sim 10^{-22} - 10^{-21}$ L ~ 4 km (LIGO) $\Delta L \sim 10^{-18}$ m

splitter

photodetector

 $h = \Delta L/L$

Optical Configuration

Initial LIGO Sensitivity Goal

- Strain sensitivity
 <3x10⁻²³ 1/Hz^{1/2}
 - at 200 Hz
- Sensing Noise
 - » Photon Shot Noise
 - » Residual Gas
- Displacement Noise
 - » Seismic motion
 - » Thermal Noise
 - » Radiation Pressure

Vibration Isolation Systems

- » Reduce in-band seismic motion by 4 6 orders of magnitude
- » Large range actuation for initial alignment and drift compensation
- » Quiet actuation to correct for Earth tides and microseism at 0.15 Hz during observation

LIGO Seismic Isolation – Springs and Masses

Seismic System Performance

Core Optics

Core Optics Requirements

- Substrates: SiO₂
 - » 25 cm Diameter, 10 cm thick
 - » Homogeneity $< 5 \times 10^{-7}$
 - » Internal mode Q's > 2 x 10⁶
- Polishing
 - » Surface uniformity < 1 nm rms $(\lambda / 1000)$
 - » Radii of curvature matched < 3%
- Coating
 - » Scatter < 50 ppm
 - » Absorption < 2 ppm</p>
 - » Uniformity <10⁻³
- Production involved 5 companies, CSIRO, NIST, and LIGO

Core Optic Metrology

Current state of the art: 0.2 nm repeatability

LIGO data (1.2 nm rms)

CSIRO data (1.1 nm rms)

Core Optics Suspension and Control

Core Optics Installation and Alignment

Initial Alignment Requirement: 100 microradians (50 goal)

LIGO Observatories

LIGO History

Progress toward Design Sensitivity

Displacement Sensitivity for the LLO 4km Interferometer

LIGO Sensitivity

Strain Sensitivity for the LIGO Hanford 4km Interferometer

Anatomy of a Noise Curve

Duty Factor for S5

LIGO Data Analysis

Data analysis by the LIGO Scientific Collaboration (LSC) is organized into four types of analysis:

- Binary coalescences with modeled waveforms ("inspirals")
- Transients sources with unmodeled waveforms ("bursts")
- Continuous wave sources ("GW pulsars")
- Stochastic gravitational wave background (cosmological & astrophysical foregrounds)

Searches for Coalescing Compact Binary Signals in S5

S4 Upper Limit: Compact Binary Coalescence

- Rate/ L_{10} vs. binary total mass $L_{10} = 10^{10} L_{\text{sun.B}}$ (1 Milky Way = 1.7 L_{10})
- Dark region excluded at 90% confidence

All-Sky Searches for GW Bursts

- Goal: detect short, arbitrary GW signals in LIGO frequency band
 - » Stellar core collapse, compact binary merger, etc. or unexpected sources

- Detection algorithms tuned for 64–1600 Hz, duration << 1 sec
- Veto thresholds pre-established before looking at data
- Corresponding energy emission $E_{\rm GW} \sim 10^{-1}~{\rm M}_{\odot}$ at 20 Mpc (153 Hz case)

$$h_{\rm rss} \equiv \sqrt{\int (|h_{+}(t)|^2 + |h_{\times}(t)|^2) dt}$$

Burst Detection Efficiency / Range

Q =8.9 sine-Gaussians, 50% detection probability:

For a 153 Hz, Q = 8.9 sine-Gaussian, the S5 search can see with 50% probability:

 $\sim 2 \times 10^{-8} \text{ M}_{\odot} \text{ c}^2$ at 10 kpc (typical Galactic distance)

 $\sim 0.05~M_{\odot}~c^2$

at 16 Mpc (Virgo cluster)

 Joint 95% upper limits for 97 pulsars using ~10 months of the LIGO S5 run. Results are overlaid on the estimated median

sensitivity of this search.

For 32 of the pulsars we give the

$$(f_{aw} = 180.6 \text{ Hz}, r = 2.2 \text{ kpc})$$

$$(f_{mu} = 405.6 \text{ Hz}, r = 0.25 \text{ kpc})$$

LIGO-G070417-01-D

A Global Network of GW Detectors

CSIRO Seminar

34

A Global Network of GW Detectors

Virgo Italy

GEO 600 Germany

What's the Future for LIGO? Advanced LIGO

- Take advantage of new technologies and on-going R&D
 - » Active anti-seismic system operating to lower frequencies
 - » Lower thermal noise suspensions and optics
 - » Higher laser power
 - » More sensitive and more flexible optical configuration

x10 better amplitude sensitivity

 \Rightarrow x1000 rate=(reach)³

⇒ 1 day of Advanced LIGO

» 1 year of Initial LIGO!

Planned for FY2008 start, installation beginning 2011

Astrophysical Targets for Advanced LIGO

- Neutron star & black hole binaries
 - » inspiral
 - » merger
- Spinning neutron stars
 - » LMXBs
 - » known pulsars
 - » previously unknown
- Supernovae
- Stochastic background
 - » Cosmological
 - » Early universe

What is Advanced about Advanced LIGO?

Parameter	LIGO	Advanced LIGO
Input Laser Power	10 W	180 W
Mirror Mass	10 kg	40 kg
Interferometer Topology	Power-recycled Fabry-Perot arm cavity Michelson	Dual-recycled Fabry- Perot arm cavity Michelson
GW Readout Method	RF heterodyne	DC homodyne
Optimal Strain Sensitivity	3 x 10 ⁻²³ / rHz	Tunable, better than 5 x 10 ⁻²⁴ / rHz in broadband
Seismic Isolation Performance	f _{low} ~ 50 Hz	f _{low} ~ 10 Hz
Mirror Suspensions	Single Pendulum	Quadruple pendulum

Advanced LIGO pre-stabilized laser

- 180 W amplitude and frequency stabilized Nd:YAG laser
- Two stage amplification
 - » First stage: MOPA (NPRO + single pass amplifier)
 - » Second stage: injection-locked ring cavity
- Developed by Laser Zentrum Hannover

Frede et al, Opt. Express 22 p459 (2007)

Seismic isolation

- To open Advanced LIGO band at low frequencies, a complete redesign of the seismic isolation system is needed
- Active isolation, feed forward

Required Isolation

» 10x @ 1 Hz

» 3000x @ 10 Hz

Advanced LIGO suspensions

Quad Noise Prototype

- Quad controls prototype installed at MIT and undergoing testing
- Noise prototype in fabrication
 - » Lowest mode predicted @ 100 Hz

Upper structure Top mass Upper intermediate mass Sleeve Penultimate mass Lower structure Test mass

Anatomy of the Projected Adv LIGO Detector Performance

Suspension thermal noise

- Internal thermal noise (due to coating)
- Newtonian background, estimate for LIGO sites
- Seismic 'cutoff' at 10 Hz

Quantum noise (shot noise + radiation pressure noise) / dominates at most frequencies

The Importance of Advanced LIGO Core Optics

- Two limiting noise sources in Advanced LIGO—both dependent on core optics properties
 - » Thermal noise due to coating-substrate interaction
 - » Quantum noise (shot noise plus radiation pressure)
- Improvements in optics lead directly to improved sensitivity
 - » Reduced scatter
 - » Tighter control on ROC
 - » Lower mechanical loss in coating
- Roles of substrate, polishing, and coating still under investigation

43

Added Optics Challenges

- Circulating power in LIGO arm cavities will approach 1 MW
 - » Absorption (leading to distortion) becomes even more significant
- Size increases from
 11 kg to 40 kg
 - » Handling tooling required
 - » Cleaning techniques must be augmented, tested
- Beam spot size increases
 - » Metrology over larger regions than in initial LIGO
- Fabrication schedule

Final Thoughts

- We are on the threshold of a new era in GW detection.
 - » The technical challenges of the first generation interferometers have been overcome
 - » LIGO has reached design sensitivity and is taking data
 - » First detections could come in the next year (or two, or three ...)
- Worldwide network is forming
 - » Groundwork has been laid for operation as a integrated system
- Second generation detector (Advanced LIGO) is approved and ready to start fabrication
 - » Will expand the "Science" (astrophysics) by factor of 1000
 - » Brings a new set of technological challenges