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Introduction

Suspension Point Interferometer (SPI)

Active vibration isolation scheme
Sensor: Auxiliary laser interferometers

Advantages
e Ultra low-frequency vibration isolation
® Reduced RMS mirror motion
e Stabilization of the interferometer

® Robust lock acquisition
@ Reduction of various technical noises

1.5m Fabry-Perot interferometers
Maximum 40dB noise suppression below 10Hz (in spectrum)

Mirror RMS motion =% 1/9
Mirror RMS speed ™ > 1/7
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Working Principle of SPI:. Fabry-Perot Arm

Fabry-Perot Interferometer
Measures the distance between
the two mirrors

SPI

MIF




Working Principle of SPI:. Fabry-Perot Arm

SPI is locked

Fabry-Perot Interferometer
Measures the distance between
the two mirrors
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Working Principle of SPI:. Fabry-Perot Arm

Differential Seismic Motion
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Working Principle of SPI:. Fabry-Perot Arm
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Working Principle of SPI: Fabry-Perot Arm

Common mode motion

ldentical Pendulums

m Asymmetry ?

No change in the distance




Theoretical Performance
Common Mode Rejection Ratio (CMRR)

—_— === Transfer functions: Example: CMRR of Simple Pendulums

0

H(w), Hy(w) 1
CRELCIENT e 2 Aw,
| | H+H, « = W,
Hy(w)  Hyw) =
% %E Conversion coefficient o
Common motion |
=P Differential motion . -
10 100
Frequency [HZ]
Simple Pendulums
Average resonant frequency: w, Other Factors
Resonant frequency @ Cross coupling from other degrees of freedom
difference: A w, Vertical, Pitch, Yaw etc ...
EVRR = 22 % e Control gain of SPI
= e Noise of SPI
Symmetry is Important




Advantages of SPI

Characteristics

@ Low Noise Sensor

® Displacement sensor (global sensor) —— DC sensitivity
— Ultra low-frequency vibration isolation

Benefits

@ Direct reduction of seismic noise in the observation band

@ Reduction of the RMS motion of the mirrors
® Stable Operation
® Robust lock acquisition
® Technical noises

® Laser noises
® Actuator noises
e Up-conversion noise by non-linearity
to name a few

} Duty Cycle Improvement




Prototype Experiment

® 1.5m long Fabry-Perot interferometers
® Triple pendulum suspensions
@ Triangular rigid cavity mode-cleaner: Frequency Stabilization
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Overview of the experimental setup




| Nd:YAG Laser (1

064nm)



Mode Cleaner Ch'amber




Suspension System

@ Triple Pendulum

e Two MGAS filters
(vertical isolation)
Resonance ~ 200mHz

® femperature drift
compensation servo
for MGAS filters

@Recoil mass to actuate
the main mirror

“ — Recoil mass

‘ Main mass




MGAS

SPI Mirror
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Results

@ Spectral measurements

@ Transfer function measurements
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Future prospects

LCGT

-

® Cryogenic Mirror: heat link wires

® Vibration introduced from heat links
» SP| can suppress it

® [ ocated close to the MIF
Important: Low noise nature of SPI

-

Cold Stage

vibration

Heat Link

Advanced LIGO
® High finesse cavity (RSE)

— |ock acquisition is difficult (when seismic activity is high)
® SPI to reduce the RMS mirror motion (considered as an option)

® \arious configurations are considered
@ |ocation

suspension platform, penultimate mass, MIF itself with different color laser, etc...

® Interferometer type
Fabry-Perot, asymmetric Michelson, etc...

® Australian group is leading the effort




Conclusion

SPI. Low-noise low-frequency active vibration isolation scheme
Ultra low-frequency performance: RMS reduction

=P Stable operation, Robust lock acquisition, Technical noise mitigation
Low noise: heat link vibration suppression for LCGT

Prototype Experiment

1.5m Fabry-Perot interferometer, Triple pendulum suspension

Spectral measurements
“*INeise spectium: maximum reduction

“Displacement RVIS:
“Velocity RVIS:

Transfer function measurements
“Vilration isolation; performance Improvement: maore than

upite 20iHz

—
Future detectors are considering the employment of SPI QX
LCGT, Advanced LIGO WY
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Motion Limiter
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Seismic Noise Estimate

Displacement [m/+/Hz]

Frequency [HZ]
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(Error Signal Evaluation)

;
Frequency [HZ]




_CoiIDriverNoise ............. .............. ......

T ........ ............ ........ ._ .

R Detector N0|se

N

—_
cDI

—_
&)

—_
cDI

N
)

—_k
o

I
~

—

o
o
—

Frequency [HZz]




=

Displacemen

10

Frequency [HZz]




Hz|

Displacement [m/

- Total sstimzited noiss

. [spioFF
AN ..... ..... —_SP|ON
| WA\ . |——Estimated noise (SPI ON)

Frequency [Hz]



Noise of the SPI
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