

UW LISA Torsion Balance Experiment

Scott E Pollack

with Stephan Schlamminger, Charlie Hagedorn, & Jens Gundlach

Center for Experimental Nuclear Physics and Astrophysics University of Washington

> Workshop on Charging Issues in Experimental Gravity July 27, 2007 LIGO #G070478-00-R

UW Apparatus

- 0.5m 13 µm W fiber (now quartz fiber)
- Au-coated Si-pendulum
 - 0.6 mm thick
 - Low mass

Split Au-coated Cu-plate

- Split-plate allows investigation of potential differences laterally across pendulum
- Heater elements (light bulbs) imbedded in plates allow thermal control
- Movable up to 10 mm from pendulum

Control Electrodes

- Used to feedback pendulum to fixed position, i.e., cold damping
- Residual pendulum motion at level of ~ 2 nrad/√Hz ≈ 1.5 aNm/√Hz
 - ≈ 0.02 fm/s²/√Hz

Top down view with pendulum removed

Photo courtesy Mary Levin Pollack 4

July 27, 2007

Torque Noise Performance

Surface Potential Measurements Run 1635: Electrode Voltage², dial=467µm

 Electrostatic surface potential defined by potential energy of plate-pendulum capacitor:

$$N = \frac{d}{d\theta} \frac{\epsilon_0 A}{2s} (V - V_{SP})^2 \overset{\widetilde{\mathbf{y}}}{\overset{\widetilde{\mathbf{y}}}}{\overset{\widetilde{\mathbf{y}}}}{\overset{\widetilde{\mathbf{y}}}}{\overset{\widetilde{\mathbf{y}}}}}}}}$$

 Determine SP of each half of split Cu-plate by measuring torque vs. applied voltage

Surface Potential Noise Impacts

Surface Potential Noise Impacts

July 27, 20

Measurement Technique

Initial Drift after Pumping Down

Surface Potential Spectrum

3. Surface potential fluctuation

3. Better contamination prevention

Surface Potential Spectrum

SP level determined by

- 1. Voltage noise on plate
- 2. Voltage noise on electrode
- 3. Surface potential fluctuation

Improved by

- 1. Better plate voltage reference
- 2. Smaller area electrodes
- 3. Better contamination prevention

Surface Potential Spectrum

Top down view with pendulum removed

shinning through window

UV has little effect on torque noise

July 27, 20

SP fluctuations of floating pendulum

UV Charging of Floating Pendulum

- Charge rate ~ 2—3 mV/s, running LED at ~ 20mA
- Couldn't get electrons onto pendulum for discharge
 - Discharging through o-ring of support shaft for fiber.
 - Time constant ~ 230s \rightarrow 1 T Ω from pendulum to ground

UV in Duty Feedback at 0.1 Hz

July 27, 2007

Reduction of noise at low frequencies

UV in Duty Feedback at 0.1 Hz

Surface Potential Noise level ~ 10 mV/√Hz

UV LED in vacuum (with quartz fiber)

July 27, 2007

Quartz Fiber Surface Potential Noise

Surface Potential Noise level ~ 10 mV/ $\sqrt{Hz} \equiv ~ 2 \times 10^6$ photoelectrons/ \sqrt{Hz}

July 27, 2007

Pollack 21

UV Output in Feedback (Going +)

Issues Charging Negatively...

- Sometimes I "find" the pendulum at further negative values, but I have a hard time getting it there myself
- Issues like one illustrated probably account for that
 - Still investigating (this data was taken this past Monday)

Summary of Charge work at UW

Surface Potential Measurements with Grounded Pendulum

- Both large and small electrodes show level ~30 μ V/ \sqrt{Hz} @ 1mHz
- Reference voltage is at ~10 μ V/ \sqrt{Hz}
- It's possible that contamination is to blame
 - i.e., large drifts after pumping system

UV LED used for charge measurements outside vacuum can

- No appreciable change in torque noise level with UV light on ~20mA
- Spectral amplitude in feedback: ~2x10⁶ electrons/Hz^{1/2} @ 1mHz
- Charge pendulum positively, but not negatively...
- In situ UV LED
 - With close proximity, run LED at low power ~ 1 mA
 - Can charge negatively now as well.
 - Will be getting feedback noise level soon!
- Quartz Fiber "removes" discharge through o-ring (R>300 TΩ)
 - No change from tungsten in spectral amplitude: ~10 mV/√Hz @ 1mHz