

Electronics Infrastructure for advanced LIGO

LSC Meeting, Boston, July 25, 2007 Daniel Sigg, LIGO Hanford Observatory

Outline

Converter Design

- Commercial baseline: Currently runs the prototypes
- New design: Low noise ADC/DAC/uplink boards

Timing System (with U of Columbia)

New design based on fiber distribution/FPGA

Power Supplies

- Baseline: 48VDC distribution with local voltage regulators
- □ EMI Plan (Huh?)
- Thermal Management
 - Possibility for water cooling
- Slow Controls
 - Epics based, no VME based systems

Some Basic Design Guidelines

Digital controls whenever possible

- > X86 architecture for controls; No VME
- Stay with the current software infrastructure as much as possible
 - > Online digital filter code
 - Frame builder & archival code
 - Diagnostics and DMT software
- □ No change in slow controls interface, i.e., EPICS
 - > No VME; maybe no dedicated slow controls hardware
- In-vacuum detection benches

Timing System

"The ability to reconstruct the arrival time of a gravitational wave signal with infinite signal-to-noise ratio shall be within 10 μs of UTC."

Distribution

- Fiber based; bidirectional links for diagnostics and status
- Timing derived from GPS
- Master/fanout units & Slave units
- Full timestamp to ADC/DAC
- □ Atomic clock
 - Separate system for diagnostics
 - Time-interval counters in each building
- DuoTone
 - (Two) sine waves for time encoding in data stream
 - Hardware locking for DAC

Timing Slave (6" x 3.5")

G070491-00-D

Converter Design Features we like to address (I)

Co-location of analog and digital

- New design uses fiber links between computer and converter
 - PCI-E for commercial
 - Gigabit ethernet for in-house design
- > All computers in mass storage room and out of LVEA
- Poor noise performance
 - Use over-sampling
 - Better analog input circuits and cleaner power supplies
- □ Limited Timing Support
 - Ideally samples are time stamped at front-end
 - Timing accuracy should be guaranteed in hardware

Converter Design Features we like to address (II)

Inadequate throughput

- Eliminate the VME backplane
- Replace with PCI-E or dedicated serial link (gigE)
- Convoluted data paths
 - > No reflective memory
 - Myrinet/10GE switched network between computers
- □ High costs
 - Better with PCI-E & in-house

Basic Requirements for In-House Development

- □ Absolute timing precision relative to UTC: 1µs
- □ Converter range: ±10V
- □ Converter noise: 100-300 nV/ \sqrt{Hz} (best effort)
- □ Latency between converter and processor: < 5µs
- □ No restriction on converter location
- No electrical connection between converters and processors (fiber links)
- Detection of transmission and timing errors
- Support for diagnostics

Converter Design Diagram

□ Use an FPGA to implement a digital IIR filter

G070491-00-D

LIGO

LIGO

Converter Design Results from Test Board

Converter Design New Boards

- □ 16 channels
- □ 6U x 280mm eurocrate form factor
- Differential signaling to uplink board (LVDS)
- □ ADC: Analog Devices AD7634
 - Fabricated and in testing
- DAC: Texas Instruments (Burr-Brown) PCM1794A
 - Design finished
- Uplink for single converter board
 - In design phase
 - Xilinx Virtex 4 FX series (most likely)

Converter Design Summary

Oversampling to achieve better noise performance

- Interface with computer at 16kHz or slower
- □ IIR filter in FPGA works down to 16 kHz
 - SURF student working on a higher precision implementation
- □ Final AA filter is now in digital domain
 - Only limited analog low pass filtering at 200kHz required
 - Same for anti-image filtering
- Much larger dynamic range
 - may make switchable whitening and dewhitening obsolete or at least reduce its requirements

Power Supplies

- □ Avoid 110V/60Hz in the (L)VEAs
- □ 48VDC power bus
- Regulation to intermediate voltages in rack
 - ➤ ±6.5V, ±16.5V, ±24V (analog systems) and +12V (digital systems)
 - Synchronous switchers locked to GPS
 - High frequency switchers with filtering
 - Backup: DC supplies
- □ Final regulation on board
 - Low drop-out low noise linear regulators
 - Noise Eater
 - Synchronous point-of-load regulators for digital systems

Linear Post Regulation

Point-of-Load Regulation

Texas Instrument PTH08T240W

ting, Boston

Synchronous Buck Regulator / Vicor V·I Modules

Power Supply Chassis

Summary

New timing design well underway

- Hope to have final design by end of year
- □ First prototype for new converter design is ready
 - Hope to have noise performance evaluated by end of year
 - Hope to have a full prototype with uplink mid next year
- □ New ideas for power supplies under investigation
 - Hope to have a design by mid next year