# Gravitational Wave Astronomy from the Ground and Space

**M.Alessandra** Papa

Max Planck Inst. f. Gravitationsphysik and Univ. of Wisconsin- Milwaukee





Amaldi Meeting 2007, Sydney LIGO G070499-00-Z

### Outline

Review results from *most sensitive* data&searches from ground-based GW observations:

\* what searches have been performed
\* if no detection what quantities are constrained by these null observations
\* a priori expectations/ astrophysical significance of the constraints
\* prospects for *upcoming* improvements

LISA

\* brief mention

Conclusions

### Disclaimer

Review results from *most sensitive* data&searches from ground-based GW observations:

will *not* attempt to describe *all searches* ever done or in project nor to mention *all detectors* taking data or under design.

#### LIGO is nearing completion of its 5<sup>th</sup> science run (S5)



#### 5<sup>th</sup> Science Run of LIGO



## LIGO's window

In the sensitive band of current ground-based detectors one could detect signals in four categories:

- from inspiraling compact objects
- bursts, typically arising from catastrophic events
- continuous quasi-periodic waves
- stochastic background of gravitational radiation



Signals from inspiraling compact objects are considered to be the most promising source for ground based detectors

Let's start from these.

# Waveform reasonably well modeled and can be used to look for systems up to ~ 80 M<sub>sun</sub>.



# Searches for signals from coalescences of compact objects

Most recent *released* result on inspiral searches from the LIGO Scientific Collaboration analyzed S3 and S4 data, together (arXiv:**gr-qc/0704:3368**)

No plausible gravitational wave event was found.

Talk by C. **Robinson for the LSC**: An upper limit on the rate of compact binary coalescences in the component mass range  $0.35-80M_{sun}$ . In all cases the upper limit (in the range  $0.1-10 \text{ yrs}^{-1} \text{ L}_{10}^{-1}$ ) is still quite far from the theoretical predictions.

### Astrophysical predictions:

- Merger rates are expressed as events per unit time per unit galaxy

- BNS merger rates inferred<sup>[p91,nps91]</sup> from 4 known binary systems suggest ranges<sup>[kk04,k04]</sup> of

$$10-170 \times 10^{-6} \text{ yrs}^{-1} \text{ L}_{10}^{-1}$$
  
with L<sub>10</sub><sup>-1</sup>= 10<sup>10</sup> L<sub>B,sun</sub> and L<sub>B,sun</sub>= 2.16 × 10<sup>33</sup> erg/s

- BBH/BHNS merger rates are much less certain and merger rates lie in the range<sup>[s05,s06]</sup>

BBH: 0.1 - 15 X 10<sup>-6</sup> yrs <sup>-1</sup> 
$$L_{10}^{-1}$$
  
BHNS: 0.15 - 10 X 10<sup>-6</sup> yrs -1  $L_{10}^{-1}$ 

p91: Phinney, ApJ 380, L17, (1991)
nps91: Narayan, Piran, Shemi, ApJ 379, 17, (1991)
kk04: Kalogera et al, ApJ Letters 614, L137 (2004)
k04: Kalogera et al, ApJ 601, L179 (2004)

**s05:** O'Shaugenessy et al, ApJ 633, 1076, (2005) **s06:** O'Shaugenessy et al, astro-ph/0610076 What does 10-170 X 10<sup>-6</sup> yrs <sup>-1</sup> L<sup>-1</sup> translate into, for expected detection rate ?

•  $\Re = 10-170 \times 10^{-6} \text{ yrs}^{-1} \text{ L}_{10}^{-1}$  : number of events per "galaxy" per megayr

 $\mathbf{R} = \mathcal{R} \mathbf{X} \mathbf{C} \mathbf{X} \mathbf{T}$  detection rate

X C: number of "galaxies" the search can see  $L_{10}^{-1}$ X T: observation time of search

-  $C = C(D_{H})$   $D_{H}$ : horizon distance of a search: maximum distance at which a signal may still be detected

### **Cumulative luminosity function**

Catalog of galaxies has been developed and cumulative luminosity  $C(D_{H})$  computed as a function of the distance (*Kopparapu et al, arXiv:0706.1283v1*)



Horizon distance of a search: maximum distance at which a signal may still be detected.

### The horizon distance (for data that has been analyzed)



LSC, S3-S4 inspiral search, arXiv/0704:3368, Talk by C. Robinson for the LSC

### .. for S4 these translate in expected rates of



with DH ~ 450Mpc

# S5 reach

D. Keppel for the LSC, APS 07 meeting



### First year of S5, estimated rates



## First year of S5, estimated rates

| Component masses (M <sub>sun</sub> )                                             | 1.4,1.4                 | 5,5                      | 10,10      |
|----------------------------------------------------------------------------------|-------------------------|--------------------------|------------|
| Cumulative blue luminosity of search, C [L <sub>10</sub> ]                       | 200                     | 2400                     | 11000      |
| Tobs[yr]                                                                         | 0.77                    |                          |            |
| Astrophysical Rate<br>per unit Tobs and C<br>[yr L <sub>10</sub> ] <sup>-1</sup> | 10-170X10 <sup>-6</sup> | 0.15-10X10 <sup>-6</sup> |            |
|                                                                                  |                         |                          |            |
| Expected detection rate<br>for the search [yr] <sup>-1</sup>                     | 1/[650-40]              | 1/[4000-50]              | 1/[800-10] |

# Other blind searches: for GW bursts

#### All inspirals of compact objects

- -all inspirals of compact objects
- Supernovae core-collapse
- -- Black hole normal modes
- -- Neutron star instabilities
- -- Cosmic string cusps and kinks
- -- The unexpected!



#### What we know about th

- Catastrophic astrophysical events will plausibly be accompanied by short GW signals
- Exact waveforms are not or poorly modeled
- Durations from few millisecond to x100 millisecond durations with enough power in the instruments sensitive band (100-few Khz)-
- aimed to the all-sky, all-times blind search for the unknown using minimal assumption on the source and waveform morphology

### Analysis scheme

same as in arXiv:0704.0943 [gr-qc]

•Less sensitive than optimal matched filtering techniques that assume good a priori knowledge of the waveform.

 Non coherent hierarchical combination of data from detectors and complementary techniques to reduce false alarm.

Coherent follow-up (see Yakushin's talk).

#### **S5 Detection Efficiency**

#### (first 5 months of S5)

Putative waveform are injected and pipeline efficiency is measured



#### **Detection Efficiency / Range**



For a 153 Hz, Q = 8.9 sine-Gaussian, the S5 search can see with 50% probability:

- ~  $2 \times 10^{-8}$  M c<sup>2</sup> at 10 kpc (typical Galactic distance)
  - ~  $0.05 \text{ M c}^2$  at 16 Mpc (Virgo cluster)

#### **Emission predictions and S5 reaches**

- Recent *core-collapse supernova* simulations (Ottl et al, PRD Lett. 96 (2006)): **11** M progenitor, S5 reach is  $\approx$  **400pc**. **25** M<sup>sun</sup><sub>sun</sub> model was found to emit more, yielding a reach of  $\approx$  **15kpc**.

**Merging BBHs** (Baker et al, PRD 93,(2006))), radiate up to  $0.03M_{tot} c^{-2}$  in Gws. If m1=m2=10, then f ~ 750Hz, which yields a reach of  $\approx$  3Mpc. If m1=m2=50 M<sub>sun</sub>then f ~ 150Hz and reach  $\approx$  120Mpc.

BBH merger rates:

0.1-15 X 10<sup>-6</sup> yrs  $^{-1}$  L<sup>-1</sup> /[3000-7]yrs

Estimate of reach for various models following [1] and rescaling for S5-to-S4 sensitivity [1] arXiv:0704.0943v1 [gr-qc], LSC, burst searches in S4 data

# Searches triggered by em observations

#### **GRB070201**

- Described as an "intense short hard GRB"
- a = 11.089 deg, d = 42.308 deg, error = 0.325 sq. deg, center is 1.1 deg from center of M31 (800kpc) and includes its spiral arms
- $E_{iso} \sim 10^{45}$  ergs if at M31 distance
- Hanford detectors were taking data



# Short GRBs and GRB070201

Most likely short GRBs are associated with the NS-NS or NS-BH merger. They are the em counterpart of strong gravitational wave signals.

Simultaneous detection of GRB and a GW event would

- firm evidence that hard GRBs do indeed stem from compact binary mergers
- provide insight into merger physics
- measure cosmological parameters (luminosity distance from GWs, red shift from em)

A non-detection of GRB070201 would

- Exclude progenitor in mass-distance region
  - Bound the GW energy emitted by a source M31

Preliminary results of this triggered search today in S. Marka's talk on behalf of the LSC

## Triggered searches SGR1806-20 hyperflare 27 Dec 04

LSC, astro-ph/0703419v2 and S. Marka's talk

#### Artist conception, credit: NASA



-H1 in astrowatch

–Galactic neutron star SGR 1806-20 emits a record flare

-Distance  $\approx$  10kpc [6-15kpc]

-Energy  $\sim 10^{46}$  erg

–X-ray pulsating tail lasting six minutes

–These QPO oscillations are in 300-2000Hz range *(Israel et al.* 

2005, Watts & Strohmayer 2006),

LIGO's sensitive band

–May be explained as due to a magnetar starquake

\_QPOs might be driven by

star's seismic modes

–GW could be associated with these modes

\_FRMS=0.174

#### The SGR 1806-20 Hyper Flare of December 27, 2004

- A number of papers have come out that, based on different magnetar models, attempt to explain the observed QPO structure.

- GW observations could help rule out some of these models

- •Which modes emit GWs
- •Where does the energy come from/star model
- GW search: no significant deviation from off-source sample was observed

- 90% upper limits on GW at detector were placed for emission at all QPOs. Most stringent for the 92.5Hz QPO:  $h_{rss}^{90\%}$ =4.53x10<sup>-22</sup> which corresponds to an isotropic emission of 7.67 x10<sup>46</sup> erg, 4.29 x10<sup>-8</sup> M<sub>sup</sub>.

-This energetics range starting to probe interesting range, because

- i) it is same order as (isotropic) em energy emitted
- ii) for a normal star max elastic energy in crust is 10<sup>44</sup> erg
- iii) with sensitivity improvements of 2 the energies probed will be in the lower 10<sup>46</sup> erg, and with advanced LIGO at lower frequency ranges of a few 10<sup>43</sup> erg become accessible.

### **Long-lived signals**

#### Stochastic background



#### **Periodic Signals**



#### **Stochastic background**

- S4 data

- no detection

for flat spectrum upper limit on
 GW energy density is:

 $\Omega_{_{\rm GW}}$  < 6.5 X 10<sup>-5</sup>

best UL to date, but still above Big Bang Nucleosynthesis constraint

(may, however, constrain cosmic string models.)



### Point sources (S4)



Upper limits on flat strain power spectrum,  $H_0$  in the [50-1800] Hz: 8.5 - 61 x 10<sup>-49</sup> Hz<sup>-1</sup>

Compare with estimated contribution from all LMXBs within 15Mpc  $\approx$  10<sup>-55</sup> Hz<sup>-1</sup>(100Hz/f)(100Hz/ $\Delta$ f)

### Point sources



Upper limits on H(f) in the [50-1800] Hz band for -3 power SB spectrum:  $1.2 - 12 \times 10^{-48}$  Hz<sup>-1</sup>

### Point source: Sco-X1

Accretion-driven neutron star. If GW emission balances the torque, the GW luminosity can be estimated from the X-ray luminosity



### **Continuous GW signals**

# **Continuous GW signals**

Pulsars (spinning neutron stars) are known to exist!

- Emit gravitational waves if they are non-axisymmetric:



### **Known pulsars, preliminary S5**



### **Known pulsars, preliminary S5**

 $h_0 = \frac{16\pi^2 G}{\epsilon^4} \frac{\epsilon}{6}$ 

Joint 95% upper limits from first ~13 months of S5 using H1, H2 and L1 (97 pulsars)

Lowest h<sub>0</sub> upper limit:

PSR J1623-2631 ( $v_{gw}$  = 180.6 Hz, r = 2.2 kpc)  $h_{0_{min}}$  = 3.4x10<sup>-26</sup> Lowest ellipticity upper limit:

PSR J2124-3358 ( $v_{qw}$  = 405.6Hz, r = 0.25 kpc)  $\varepsilon$  = 7.3x10<sup>-8</sup>

Due to pulsar glitches the Crab pulsar result uses data up to the glitch on 23 Aug 2006, and the PSR J0537-6910 result uses only three months of data between two glitches on 5th May and 4th Aug 2006

known

fiducial value



### **Crab pulsar prelim**

 $h_{0 \, spin-down} = 1.4 \times 10^{-24}$  $h_{0 S5 first vear} = 5 \times 10^{-25}$ 

at fiducial I =

However, we know that not all energy goes into GWs: [1] estimates

But / could be higher than the fiducial value. No definitive observational evidence but a number of theoretical investigations<sup>\*</sup> suggest:

 $I = 1-3 \times 10^{38} (\text{kg m}^2)$ 

Upper limit on  $h_0$  can be recast as exclusion area on  $I\epsilon$  plane:



[1]: Palomba, AA, (354) (2000)



### Blind(er) searches



### **Blind searches: expressing results**



$$h_0 = \frac{4\pi^2 G}{c^4} \frac{If^2}{d} \varepsilon$$

If all spindown is due to GW emission (for I=1e38kgm<sup>2</sup>):

$$\varepsilon^2 = 7.6 \times 10^5 \frac{\dot{f}}{f^5}$$

 $h_0$  can be expressed as a function of only f, fdot, and d.

# **Expressing the reach of search from UL values.**

Contour plots of distance at which one of the fast-scan **S4 searches** could detect a source with a given f and fdot.

These are NOT typical S5 numbers. Deepest searches are expected to reach  $\sim$ 1kpc for  $\epsilon$ =10<sup>-5</sup>.



Wide-band and spindown searches. Overview by G. Mendell.



# LISA will do gravitational wave astronomy

- LISA will observe from 0.1 mHz to about 0.1 Hz
- What astronomical systems have time-scales of seconds to hours?
  - Black holes of mass *M* have dynamics up to  $f_{max} \sim 1 \text{ mHz} (M/10^6 M)^{-1}$
- Binary systems have orbital frequencies in this range if the stars are compact: white dwarfs, neutron stars, or stellar black holes
- There are random backgrounds due to binaries, black holes, and any primordial sources of GWs
  - Exotic systems, such as cosmic strings, may radiate in this band.
  - Besides doing astronomy, LISA will do fundamental physics:
  - Study black holes in great detail, testing general relativity: BH uniqueness, Hawking area theorem, cosmic censorship
  - Measure the Hubble rate as a function of time to high *z*: track dark energy evolution.

# The data analysis

Different data analysis problem with respect to ground-based detectors:
 Searches for various signals are not independent

EMRI signals require search over very large parameter space-> hierarchical method has to be developed

WD-WD binary confusion noise

Signal extraction and parameter estimation has to be done iteratively, from strongest sources to weaker ones

- Mock LISA Data Challenge: 2<sup>nd</sup> challenge just completed.

- Focuses efforts of community.
- Has leveraged existing techniques from ground based detectors

### Short-period binaries

- Above 0.1mHz: several "verification" binaries
  - 0.1-2mHz resolvable galactic binaries
- Should be possible to remove them from the data
- And for some fraction of them determine distribution of parameters
  - Below 0.2mHz: non resolvable -> confusion noise
    - WD/WD Distribution propoerties

### Merger of SMBH

- 10<sup>4</sup>-10<sup>7</sup> M<sub>sun</sub> : very loud, should be able to see merger waveform and compare with simulations. Non-linear effects of gravity. Perhaps rare.
  - $10^3 10^5 M_{sun}$ : less rare, will not see merger phase.

### Captures of compact objects by MBH

- mapping of space-time around MBH
  - Census of the BHs
- There may be strong background if SMBH at early times grew by I/EMRI capture

### **Collapse of supermassive stars**

• To form SMBHs in galactic nuclei

### Stochastic background

Not so great

#### **GW** astronomy.....



...we're getting there. GW observations are *starting* to contribute astrophysical information.

If GW were observed now no cherished belief would be challenged.

If GW are not observed by advanced ground-based detectors and LISA, cherished beliefs will be questioned.

.... in the mean time.... stay tuned!

**The End**