

Eyes Wide Open:

Searching for Gravitational Wave Bursts

Peter Shawhan for the LSC-Virgo Burst Analysis Working Group

LSC-Virgo Meeting July 23, 2007

LIGO-G070516-00-Z

We're listening to the whole sky – who knows what's out there?

Models are OK, but don't put *too* much faith in them!

Goal: be able to detect any signal

- ... if it has sufficient power within the sensitive frequency band
- ... and is "short"

Use signal analysis methods that don't require detailed knowledge of waveforms

Some Specific Astrophysical Targets

Stellar core collapse

Binary coalescence with in-band merger

(IO)) VIRG.

Also back up the matched-filtering search for rapid inspirals

Cosmic string cusp or kink, instability in a rotating system, something else...

LSC Meeting, 23 July 2007

LIGO-G070516-00-Z

Correlating GW Events with Other Observations

GW burst sources may also emit EM or particles

e.g. see Sylvestre, Astrophys. J. 591, 1152 (2003

"Externally triggered" searches: GRBs, SGR flares, pulsar glitches, supernovae, neutrinos, ...

Active subgroup of the Burst Group devoted to this

Time of GW signal may not exactly match time of EM/particle signal – depends on astrophysics

Eventually will want to use GW events to trigger prompt EM follow-up observations

Decompose data stream into time-frequency pixels

Fourier components, wavelets, "Q transform", etc.

Several implementations of this type of search

Normalize relative to noise

as a function of frequency

Look for "hot" pixels or clusters of pixels

Can use multiple ($\Delta t, \Delta f$) pixel resolutions

Crucial since a GWB may look just like an instrumental glitch

Require coincidence in time, frequency, etc.

Example: H1/H2 amplitude consistency cut from S4 all-sky burst search

Generally apply same tests to time-shifted data streams to estimate rate of false coincidences

Look for same signal buried in two data streams

r-statistic checks for consistent shape, regardless of relative amplitude

Integrate over a time interval comparable to the target signal

(0)

Multiple burst search methods are in active use

Mathematical arguments about optimality only go so far

Implementation details are critical

Data conditioning, robustness against non-stationary noise, ...

Some degree of competition and cross-pollination

Big emphasis on data quality and vetoes

To reduce trigger rate, possibly allow thresholds to be lowered, and help us judge whether an event candidate may be real

Test / tune searches using simulated signals

LSC Meeting, 23 July 2007

Not as sensitive as matched filtering for known signals

Generally require much less computation to cover a wide parameter space

But not too much worse for short signals

Coherent WaveBurst results from blind injection test period on June 5-6:

Order-of-Magnitude S5 Range Estimates for Supernovae and BH Mergers

LIGO-G070516-00-Z

⇒ reach ≈ 16 kpc

(O) VIRG

Taking Full Advantage of the Global Network

Increased emphasis on making use of all available data

Various detector networks during S5 / VSR1

Advantages:

- More observation time
- Better sky coverage
- Better detection confidence
- Better source reconstruction

time not covered: 1.8%

What Else Could We Be Doing Better?

Longer-duration signals

Wider range of simulated signals

Including available modeled signals

More-prompt analysis

Cute Boy (No.6) by Martin Paul, http://photo.net/photodb/photo?photo_id=5321993