G070517-00-0 London Imperial College – LISA and LISAPF Imperial College

T.J. Sumner – ICL lead and LIST

Henrique Araujo, Markus Schulte, Diana Shaul, Christian Trenkle (now Astrium), Simon Waschke, Peter Wass (now Trento)

Electrostatic Modelling Heritage spectrum (10 year mission) Δd) mi LTP EM Design **GEAN** Modelling

Charging of <u>isolated</u> proofmasses in satellite experiments

Effects of free charge

- Lorentz force
- Electrostatic forces from mirror charges
- Spring Constants
- Forces from applied voltages

Charging Estimates

- Rates
- Timelines

Charge Management

- Measurement procedures
- Discharge procedures Charging Workshop - MIT - July07

G070517-00-0

Lorentz force noise

Charging Workshop - MIT - July07

$$\begin{aligned} \begin{array}{l} \begin{array}{l} \begin{array}{l} \hline \label{eq:product} \textbf{Electrostatic forces} \end{array} \end{aligned} \\ F_{k} &= -\frac{\partial E}{\partial k} = \frac{1}{2} \sum \frac{\partial C_{i}}{\partial k} V_{i}^{2} \left(+ \frac{Q^{2}}{2C^{2}} \frac{\partial C}{\partial k} - \frac{Q}{C} \sum_{i=1}^{n} V_{i} \frac{\partial C_{i}}{\partial k} \right) \\ F_{k} &= \frac{Q^{2}}{2C^{2}} \frac{\partial C}{\partial k} = \frac{Q^{2}}{2C^{2}} \left(\frac{\partial C_{r}}{\partial k} + \frac{\partial C_{l}}{\partial k} \right) \approx \frac{Q^{2}}{2C^{2}} \left(\frac{4\varepsilon A}{d^{3}} \Delta d - \frac{\varepsilon \Delta A}{d^{2}} \right) \\ \Rightarrow a(t) \approx \frac{\dot{Q}^{2}t^{2}}{2mC^{2}} \left(\frac{4\varepsilon A}{d^{3}} \Delta d \right) \Rightarrow \text{constrains } T_{d} - \Delta d \text{ parameter space} \\ \Rightarrow (a_{n})^{2} \approx \left(\frac{Q^{2}}{2mC^{2}} \frac{4\varepsilon A}{d^{3}} \left(1 + \frac{2}{C} \frac{4\varepsilon A}{d^{3}} (\Delta d)^{2} \right) \delta d_{n} \right)^{2} + \left(\frac{Q\delta Q_{n}}{mC^{2}} \frac{4\varepsilon A}{d^{3}} \Delta d \right)^{2} \\ \Rightarrow \delta_{07651} \frac{Q^{2}}{2C^{2}} \frac{4\varepsilon A}{d^{3}} \left(1 + \frac{2}{C} \frac{4\varepsilon A}{C} (\Delta d)^{2} \right) \\ \end{array} \end{aligned}$$

$$\frac{\text{Imperial College}}{E_{\text{Indon}}} \qquad \frac{\text{Electrostatic forces}}{\sum_{k=1}^{n} \frac{\partial E}{\partial k}} = \frac{1}{2} \sum_{k=1}^{n} \frac{\partial C_{i}}{\partial k} V_{i}^{2} + \frac{Q^{2}}{2C^{2}} \frac{\partial C}{\partial k} - \frac{Q}{C} \sum_{i=1}^{n} V_{i} \frac{\partial C_{i}}{\partial k}$$

Common-mode voltage effects disappear to first order in force Differential-mode voltages used for charge measurement – see later

$$\Rightarrow (a_n)^2 \approx \left(\frac{\delta Q_n}{mC} \Delta V \frac{\partial C_r}{\partial k}\right)^2 + \left(\frac{Q}{mC} \delta V_n \frac{\partial C_r}{\partial k}\right)^2 + \left(\frac{Q}{mC^2} \frac{\partial C_r}{\partial k} \Delta V \frac{\partial C_r}{\partial k} + \frac{Q}{mC} V_{cm} \frac{\partial^2 C_r}{\partial k^2}\right)^2 \delta k_n^2$$

 $\Rightarrow k \approx \frac{Q}{C^2} \frac{\partial C}{\partial k} \Delta V \frac{\partial C_r}{\partial k} + \frac{Q}{\partial k} V_{cm} \frac{\partial^2 C_r}{\partial k}$ G070517-00-0 $\frac{\partial^2 C_r}{\partial k} + \frac{Q}{\partial k} V_{cm} \frac{\partial^2 C_r}{\partial k}$ HIT - July07

London Lummary of Charge Limits

	Effect	Limit (C)
	Lorentz Noise	4x10 ⁻¹¹ (10 ⁻⁴ Hz)
	Displacement Noise	4x10 ⁻¹¹
	Charge Noise (Δd)	1.4x10 ⁻¹¹ (10 ⁻⁴ Hz)
	Stiffness (assymmetry)	3x10 ⁻¹² (≡70mV)
	Stiffness (ΔV_{dm})	10 ⁻⁸
	Stiffness (1V _{cm})	4x10 ⁻¹³
	Potential (noise)	10-2
	Potential (noise) $(1V_{cm})$	3x10 ⁻¹¹
	Assumptions!!	
	Δd	10µm
G070517-	$\delta_0 V_n$ Charging Worksho	₀1Q₁⊤µゾ∦∕ýHz

Imperial College London

LISA Geant4 Geometry Model

- S/C: LISA Solid Model (GSFC/NASA) 0
- 0
- Q LTP IS: CAD (Carlo Gavazzi Space)
- ~200 placed volumes (85% total mass) @ 46 mm cube test mass, YZ injection

Charged Particle Environment

G070517-00-0

Charging Workshop - MIT - July07

10

Imperial College

London

Geant4 Physics Processes

Most G4 physics, including latest developments*

e Electromagnetics

- E_{th} = 250 eV
- Photo/Electronuclear

e Hadronics

- Intra-nuclear cascades
- for protons and light ions

Oecays

Hadronic Models

Particle	Model	Emin	Emax	
	G4PreCompound	0	70 MeV	
p, n	G4BinaryCascade	65 MeV	6.1 GeV	
	G4QGSP	6 GeV	100 TeV	
``````````````````````````````````````	G4BinaryCascade	0	1.5 GeV	
π+, π-	LEP	1.4 GeV	6.1 GeV	
	G4QGSP	6 GeV	100 TeV	
	LEP	0	100 MeV	
α, τ, α	G4BinaryLightIonReaction	80 MeV	10 GeV/n	
³ He, GenericIon	G4BinaryLightIonReaction	0	10 GeV/n	
<b>K</b> ⁺ <b>K</b> ⁻ <b>K</b> ₋ <b>K</b> ₋	LEP	0	6.1 GeV	
$\mathbf{K}, \mathbf{K}, \mathbf{K}_{0L}, \mathbf{K}_{0S}$	G4QGSM	6 GeV	100 TeV	
$\underline{\mathbf{p}}, \underline{\mathbf{n}}, \Lambda, \underline{\Lambda}, \Omega^{-}, \underline{\Omega}^{-},$	LEP	0	25 GeV	
$\Sigma^{\text{-}}, \underline{\Sigma^{\text{-}}}, \Sigma^{\text{+}}, \underline{\Sigma^{\text{+}}},$	LIED	25  CeV	10 TeV	
$\Xi^0, \underline{\Xi}^0, \Xi^-, \underline{\Xi}^-$	ΠĽΓ	25 Ge V		
π ⁻ , K ⁻	G4AbsorptionAtRest			
<u>p, n</u>	G4AnnihilationAtRest			
n	G4LCapture			
n	G4LFission			
All hadrons	G4LElastic	0	25 GeV	

G070517-00-0 Charging Workshop - MIT - July07 * Working within GEANT4 development team Imperial College

protons solmin



G070517-00

Time, s

12

Imperial College London

### Imperial College London

# **Charging Multiplicity**



#### Imperial College London

# Charging Spectra I



G070517-00-0

Charging Workshop - MIT - July07

14

# Spectral Charging Efficiency



Imperial College

# LISA Results

Imperial	College
London	

primary	solar	GCR flux			timeline		
particle	activity	$\Phi$ , /s/cm ²	Φ, %	N ₀ (x10 ⁶ )	CPU, days	T, s	N ₀ /N _Q
protons		4.29	92.0	121.1	150	200	2189
He-4	min	0.315	6.8	14.4	12	321	1002
He-3		0.0591	1.3	14.1	12	1683	1073
Total		4.66	100	149.6	174	-	419
protons		1.89	91.9	53.3	70	200	1889
He-4	max	0.142	6.9	9.3	11	462	849
He-3		0.0236	1.1	8.0	10	2402	928
Total		2.06	100	70.6	91	-	359

- CERN LSF Cluster
- Q 2.2x10⁸ Events
- everal CPU Years
- 200 s exposure time

### Latest LISA result

**– Astropart Phys. 22,** 451-469 (2005)

Rate = +50 e/s

Noise =  $30 e/s/Hz^{-1/2}$ 

# Non-Simulated Physics

- Potential Charging Processes:
- Electron-induced kinetic emission
- Ion-induced kinetic emission
- Atom sputtering (<0.01 at/s)</p>
- X-ray transition radiation (<1 +e/s)</p>
- X-ray Cherenkov radiation (<1 +e/s)</p>
- Cosmogenic activation (<<1 +e/s)</p>
- Hadron-induced x-ray emission

Kinetic emission of low energy secondary electrons (<50 eV) due to incident electrons (EIEE) and ions (IIEE) can be significant !





#### G070517-00-0

Imperial College



### **GP-B Simulations**

### Imperial College London



Flare result is ~2-3 times too high but does not allow for spectral modification of protoping Works OP-B^M Orbit^{uly07}

G070517-00-0



# Charging from Solar Events



- Large solar flares (<1 /yr) can seriously disrupt normal operation</p>
- More modest flares (~1/yr) can deposit >10⁹ charges in ~1 day
- Small but frequent flares (>5 /yr) will contaminate the science data
- Recommendation on specification of radiation monitor for LISAPF
  G070517-00-0
  Charging Workshop MIT July07

## Imperial College Charging from Solar Flare



0

0

0

0

0

- Event fluence 6x10⁵ p/cm² 0
- Charging rate at peak flux 0 ~160 +e/s
- Total event charge ~3x10⁶ +e 0
- Frequency 5-10 /year 0

7-00-0 Charging Workshop - MIT - July07 Need to characterise SEP distribution to lower fluences G070517-00-0

21

Charging rate at peak flux

Total event charge ~5x10⁹ +e

~130 000 +e/s

Frequency << 1 /year

Imperial College London Imperial College London

CR Variability – INTEGRAL and POLAR



No dramatic concern - some indications of isolated CR fluctuations, probably induced by solar events. 22



## **Radiation Monitor**



ICL Detector concept: 2 PIN diodes in tetescopic configuration:



PINs have been kindly provided by GLAST collaboration



## **Radiation Monitor**





Coincidence spectrum for GCR

Coincidence spectrum for SEP

Charging Workshop - MIT - July07

## **Radiation Monitor**





## The CMS is a distributed system



## **Inertial Sensor Design**



V.



•Electrode isolation •Capacitance matrix Capacitance gradient •Cross-coupling matrix

•Caging design G070517-00-0 •Charge sensitivity – electrode layout

# Charge Management System

Charge Measurement using applied dither force in transverse direction with capacitive sensing of test-mass response.



Discharge technique using differential illumination of surfaces with UV illumination, with bias voltage enhancement if needed.



## **Dither Technique**

•Different gaps in each direction give different measurement authority

•Need to see dither above residual drag-free position noise

•Assume transverse dither with  $1 \text{nm}/\sqrt{\text{Hz}}$ position noise

# Charge Measuremen



29



# London Charge Neutralisation

 $R = LT_i\eta_{lf}T_f\eta_{vc}T_{vc}\eta_{pe}\eta_t$ 

 $\eta_{pe} \approx 10^{-6} \operatorname{at}_{T_f} 2537_X \text{A}_{is} \text{target but needs}$ 

measuring forn'aral'ssufaces fibre

 $\Rightarrow$  3×40^A photoelectrons per second in titanium with epoxy seal)

# London Charge Transport - η_t

•Dual Surface Illumination with dc bias voltage to modify ballistic trajectories

 $-2.1 \text{ V/m/eV gives } \delta Q/\delta t \sim 15 \text{ charges/s}$  $-80 \text{ V/m/eV gives } \delta Q/\delta t \sim 6x10^3 \text{ charges/s}$ 

—500 V/m/eV gives  $\delta Q/\delta t \sim 3x10^4$  charges/s

•Differential Surface Illumination using individual lamp currents to modify electron fluxes

 $-L(\phi)$  and L(I)



# **Charge Transport**

## •Polar Ouput





# **Charge Transport**

## •Differential Surface Illumination



## Electrode:Housing:TM

- 1 : 1.3 : 0.1
- 1 : 1.1 : 13.1

 $-3.9 \times 10^3 < \dot{Q} < +3.5 \times 10^3 / s$ 

### Add dc bias to drive harder when required

 $\Rightarrow$  x5

# Charge Transport Test Rig



Imperial College

London



# LISAPF Lamps

- Derivative of those used on EINSTEIN and ROSAT – 6,000 hr lifetimes
- Low pressure electric discharge cf rf discharge used on GPB.
- 8 housed in 3.5kg package for LISAPF
- 100:1 dynamic range using PWM at kHz frequencies
- 3W per lamp

![](_page_35_Figure_6.jpeg)

#### Imperial College London

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_5.jpeg)

![](_page_36_Picture_6.jpeg)

![](_page_36_Picture_7.jpeg)

G070517-00-0

Charging Workshop - MIT - July07