Modeling of fused silica optics and coatings

Hai-Ping Cheng

Department of Physics and Quantum Theory Project, University of Florida, Gainesville FL 32611

> LSC meeting July 23-26 2007 MIT

L1G0-G070567-00-Z

Acknowledgment: NSF/KDI-ITR Program and DOE/NERSC Super Computer Center, UF/HPC Multi-scale simulation of material behaviors including chemical reactions

•Thermal Noise, Mechanical loss: A serious problem from the LIGO pr

- $\cdot {\rm Crack}$ propagation and hydrolytic weakening in ${\rm SiO}_2$
- ·Chemo-mechanical processes

Quantum modeling for materials properties

Density functional theory with general gradient approximations: A state-of-the-art method for first-principles material simulation with chemical accuracy

The Kohn-Sham equation for a system with periodic boundary condition is written as follows,

$$\begin{bmatrix} -\frac{1}{2}\nabla^{2} + V(\rho(r)) \end{bmatrix} \psi_{\alpha} = \varepsilon_{\alpha}\psi_{\alpha}; \alpha = (n, k)$$

$$V(\rho) = V_{e-nuc} + V_{H}(\rho) + V_{XC}(\rho) \qquad \sim 10^{3} \text{ electrons}$$

$$(r) = \psi_{n,k}(r) = \sum_{\substack{f, \frac{1}{2} | \overset{r}{G} + \overset{r}{k} |^{2} \le E_{cu}} c_{n, \overset{r}{G} + \overset{r}{k}} e^{i(\overset{f}{G} + \overset{f}{k})\overset{r}{r}} \quad \forall_{\alpha}(r) = \psi_{n,k}(\overset{V}{r}) = \sum_{\mu} c_{\mu n}^{k} \phi_{\mu}^{k}(\overset{V}{r}) e^{i\overset{V}{k} \cdot \overset{r}{r}}$$

 Ψ_{α}

Molecular dynamics (MD) method

$$m_i \frac{d^2 \mathbf{R}_i}{dt^2} = -\nabla_{\mathbf{R}} U(\{\mathbf{R}\}, \rho(\mathbf{r}))$$

R: Nuclei position, ρ electron density, in general, one solve the whole wave function to get energy and forces. In classical MD, we replace U by empirical functions

Van Beest, Kramer, van Santen (BKS) Potential for SiO_2 PRL 64, 1955 (1990)

$$U_{MD}\left(\left\{\mathbf{r}_{ij}\right\}\right) = \sum_{i < j} V_{ij}\left(\mathbf{r}_{ij}\right)$$
$$V_{ij}\left(\mathbf{r}_{ij}\right) = \frac{q_i q_j}{r_{ij}} + A_{ij} e^{-b_{ij}r_{ij}} - \frac{C_{ij}}{r_{ij}^6}$$

Classical MD ~10⁶ -10⁸ atoms ~nano-seconds Good for obtaining statistics, but accuracy is limited by energy functions

A, b, C, q: potential parameters for Si-Si, 0-0, & Si-O

Modeling and Simulation --What we can do and what to expect

- Quantum Modeling -- based on density function theory Electronic Properties: Energy barriers, dielectric functions, Young's modules, Poisson ratio, effects of dielectric doping, parameters for classical simulations,
- Classical molecular dynamics Mechanical and thermodynamical properties, structure: Young's modulus, Poisson ratio, thermal expansion coefficient, thermal conductivity
- New development: Hybrid Quantum-classical simulation Embedding a quantum model cluster in a classical environment for better description of energy barriers.
- Challenges: Accuracy in energy barrier, quality of classical potential

Quantum calculation of crystal

properties

	α -quartz	α -cristobalite	β-quartz	β -cristobalite
<i>a</i> (•) EXPTL	4.92	4.96	5.00	
a (•) SIESTA	5.02	4.93	5.18	
a (A) PWSCF	5.06	5.13	5.13	
c/a EXPTL	1.10	1.39	1.09	
c/a SIESTA		1.41	1.09	
	1.10			
c/a PWSCF	1.11	1.40	1.09	
E_c (eV/SiO ₂)				
EXPTL	19.23	19.20	19.18	
SIESTA	21.34	21.30	21.29	21.13
VASP				
PWSCF				

Amorphous silica

The amorphous silica bulk is obtained by annealing of the liquid glass from 8000K to 300K.
Huff et al, J. Non-Cryst. Solids 253, 133 (1999)
A 10⁴-atom slab is used to simulate the surface.

Density, paircorrelation functions are in agreement with experimental data Wright J. Non-Cryst. Solids,

Properties of amorphous silica surfaces

- In the absence of strain, the Si-O bonds are inert to H_2O and NH_3 , etc.
- Strained Si-O bonds greatly increase the reactivity by creating acidic and basic adsorption sites on silicon and oxygen.
- Reactive sites (surface defects) play crucial roles in the surface corrosion
- Two-membered-ring (TMR) is a surface defect with high abundance

Water destroys TMR, heating abo<u>Rienker</u> et al, jet 6113^sci19722, 95 500 °C restores the TMR, surface 2000; cluster model Surf. Sci. dehydroxylation S. ilarori et al, JPC B105, 8007 "[2001] β-cristobalite model

Results: Fracture Point Snapshot

Comparison between amorphous systems

The Problem related to LIGO: Coating Thermal Noise

Relaxations of glasses affect:

Neutron and light scattering Sound wave attenuation Dielectric loss

A direct relation between a microscopic quantity V and a macro-scopic measurement X'' is (Wiedersich et al. PRL (2000) 2718

$$\chi''(v) \propto Q^{-1} \propto \int_{0}^{\infty} \frac{2\pi v\tau}{1 + (2\pi v\tau)^2} g(V) dV$$

 $\chi^{"}(v)$: light scattering scattering susceptility, V: barrier, Q^{-1} : internal friction g(V): barrier distribution, τ : relaxation time

Thermal noise relates to Q via Young's modules, Poisson ratio,... G. Harry et al. Class Quantum. Grav. 19 (2002) 897-927 *Recent reference: G.Harry talk in* LIGO/Virgo Thermal Noise Workshop October 2006

Quantum calculations of silica

Barrier distribution from classical MD

Calculated Q⁻¹ vs. frequence

Improvements

Relaxation during barrier calculation Locating all possible low barriers Improving potential energy function Improving statistics Also: Investigate hydroxylated surfaces

Solid: 300 K Dashed: 32x300 K Blue: Bulk Red: Surface

Conclusion: Bad compared to experiments!

Ta_2O_5 : Structure

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

A high-temperature structure for Ta_2O_5 with modulations by TiO_2 substitution Makovec et al. Journal of Solid State Chemistry 179 (2006) 1782–1791

PLAN: quantum calculations of $Ta_2O_5 + TiO_2$

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Optimized Ta_2O_5 high-temperature crystal structure (via DFT). High-T structure is closer to amorphous structure, a better model than the low-T one. Structure and mechanical properties of pure and doped Ta_2O_5 Effect of local chemistry on Young's moduli, Poisson ratio

$$\begin{split} S_x(f) &= 2k_{\rm B}T\phi_{\rm eff}(1-\sigma^2)/(\pi^{3/2}fwY), \\ \phi_{\rm eff} &= \phi + d/(\sqrt{\pi}wY_{\perp}) \big((Y/(1-\sigma^2) - 2\sigma_{\perp}^2YY_{\parallel}/(Y_{\perp}(1-\sigma^2)(1-\sigma_{\parallel})))\phi_{\perp} \\ &+ Y_{\parallel}\sigma_{\perp}(1-2\sigma)/((1-\sigma_{\parallel})(1-\sigma))(\phi_{\parallel}-\phi_{\perp}) \\ &+ Y_{\parallel}Y_{\perp}(1+\sigma)(1-2\sigma)^2/\big(Y\big(1-\sigma_{\parallel}^2\big)(1-\sigma)\big)\phi_{\parallel}\big), \end{split}$$

G. Harry et al. Class. Quantum Grav. 24 (2007) 405-415

Simulation Milestones

 Examine properties of silica using the current model and compare with existing experimental measurement on SiO₂ bulk and surface, extend our investigation to silicates. (Advance LIGO)

• Investigate the effects of coating and dopant materials used in the LIGO experiment, and understand the change of physical properties. (Ta_2O_5 , TiO_2 , HfO_2 , Nb_2O_5 ,...titania, zirconia lutetium doping...) (Advance LIGO)

 In collaboration with experiments, seek for new coating materials that have optimal combinations of low thermal noise and optical absorption, computer-aided material design (beyond Advance LIGO).

Collaborators

· Group members

Yao He Luis Agapito Lan Li Chao Cao Lex Kemper YunWen Chen Joey Nicely Manoj Srivastava Yuning Wu

Mao-Hua Du Krishna Muralidhar Jian-Wei Zhang Chun Zhang Lin-Lin Wang Andrew Kolchin Ying-Xia Wang Grace Greenlee, Chris McKenney Sean Lauzat, Meng Wei

- UF/MIT OWG/LIGO
- ITR faculty team
 Rod Bartlett
 Hai-Ping Cheng
 Jim Dufty
 Frank Harris
 Sam Trickey
 Sidney Yip (MIT)
 Pierre Deymier (UA)

Joe Simmons (UA) Tom Dickinson (WSU) Ken Jackson (UA)