

Outline

The Relativity Mission GP-B
 Experiment Overview
 Results as of April 2007

Charge Management

- System Design
- Results
- Patch Effects

Lessons Learned

- Charge Measurement Issue
- The Path to LISA and STEP
- The NanoSat Program for Technology Development

The Relativity Mission Concept

"No mission could be simpler than Gravity Probe B.

STANFORD

... just a star, a telescope, and a spinning sphere." — William Fairbank

Bottom Line

STANFORD

GP-B has demonstrated that complex physics experiment work in space
 Seeing General Relativity Directly in a Controlled Experiment

GP-B experience is invaluable for future missions

Gyroscopes are consistent with one another and with GR predictions for the frame-dragging and the geodetic effects to less than 97 marcs/yr.

Statistical error is significantly smaller than the differences between gyroscopes or between data runs: clear room for improvement!!

Charge Management

•	Charging Sources	Ground Te	st/Analysis	SM Results	
	Levitation	< 1V test		200 – 500 mV	
	 He gas spin-up 	< 1V test		Not observed: < 20 mV	
	 Cosmic radiation 	~ 0.1 -1 mV/d	ay (GEANT)	0.1 – 1 mV/day	
•	Variation in cosmic radiation • Shielding: Decreasing • Solar flares	on charging from Gyro #1 to	o Gyro # 4		
Rotor charge controlled with UV excited electrons					
	• 2 UV Hg lamps (254 nm line)				
	• 8 UV switches			Schematic of GP-B UV architecture	
	• 2 UV fibers per gyros	scope	. <u></u>	× 4 gyroscopes	
			UV Lamp A UV Lamp B	UV switch #1A UV switch #1B UV switch #1B	

- Continuous measurement at the 0.1 mV precision
- Control to 5 mV meets requirement of 15 mV

STANFORD UNIVERSITY

Charge Measurement by Force Modulation NO PATCH EFFECT

$$V_{R} = \frac{Q_{R} + \sum_{e\pm=1}^{3} \langle V_{e\pm} \rangle \cdot C_{e\pm} + \langle V_{g} \rangle \cdot C_{g}}{C_{T}} \qquad C_{T} \equiv \sum_{e\pm=1}^{3} C_{e\pm} + C_{g}$$
Nominally $\langle V_{e\pm} \rangle = \langle V_{g} \rangle = 0 \qquad \Rightarrow \qquad V_{R}(\omega = 0) = \frac{Q_{R}}{C_{T}}$

$$F \equiv F_{+} - F_{-} = \frac{A_{+}\varepsilon_{0}}{2d_{+}^{2}} (V_{e+} - V_{R})^{2} - \frac{A_{-}\varepsilon_{0}}{2d_{-}^{2}} (V_{e-} - V_{R})^{2}$$

$$V_{e\pm}(\omega_{C}) = \pm V_{C} \cos(\omega_{C}t) \qquad A_{+} = A_{-} \equiv A \qquad d_{\pm} \equiv d \pm \Delta d$$

$$F(\omega_{C}) = \frac{2A\varepsilon_{0}}{d^{2}} V_{R}V_{C} \cos(\omega_{C}t) \quad \text{to } O(\Delta d)$$

$$\overset{R \Rightarrow \text{rotor}}{e^{\pm} \Rightarrow \text{electrode pair}} \underset{g \Rightarrow \text{ground plane}}{g = 0} \qquad a^{\pm}/d^{\pm} \Rightarrow \text{electrode pair area/spacing}$$

$$\omega_{C} < \omega_{\text{Suspension}} \Rightarrow F(\omega_{C}) = 0 \text{ measure } F(\omega_{C})$$

$$\omega_{C} < \omega_{\text{Draf-free}} \Rightarrow d(\omega_{C}) = 0 \text{ measure } F_{\text{Drag-free}}(\omega_{C})$$

Page 7 $F(\omega_c)$ proportional to V_R and V_c and independent of Δd to $O(\Delta d)$

1)

2)

3)

GP-B Gyro On-Orbit Initial Lift-off First Indication of Gyroscope Charging

Initial gyro levitation and de-levitation using analog backup system

STANFORD

Gyro "falls" 30 µm in 2.7 sec: Equivalent to 1) SC drag of ~10⁻⁵ m·s⁻² or 2) Rotor voltage of ~300 mV SC drag excluded: $a_{DF} < 10^{-6} m \cdot s^{-2}$, Fall time >9 sec

Page 8 Gyroscope levitates with ~ 200 mV – 500 mV charge

STANFORD Charge Control: Discharge of Gyro #1

UV Electrode

Charge controlled to < 5 mV

Charging History and Rates

10

 10°

101

10⁻² Jan 20

Updated 2005 Jan 22 23:56:02 UTC

Jan 21

Universal Time

5

Particles

-11.5

-10

3

4

5 6

8 9 10 11 12

7

Jan 23

NOAA/SEC Boulder, CO USA

Jan 22

Charging rates to day 390				
	Average Charging Rate	Sun Spot 720		
	mV/day	mV		
Gyro 1	0.098+/-0.003	0.63+/-0.05		
Gyro 2	0.114+/-0.003	0.74+/-0.05		
Gyro 4	0.152+/-0.003	1.15+/-0.05		

STANFORD UNIVERSITY

Page 10

UV Lamp A Intensity vs Operating Hours

STANFORD UNIVERSITY

- UV lamp intensity decay time constant ~ 230 hours
- Large variability of discharge rates between gyroscopes
- The GP-B Hg UV lamps met all requirements

Experimental Observations Coupling of rotor-fixed frame to the GSS

Modulation at polhode frequency

- Z (telescope axis) bias: 2×10⁻⁸ N
- Control effort at 1.3Hz spin: 30% of ~2×10⁻⁷ N
 - Position & suspension voltage at 1.3Hz spin: 60nmpp

Control effort at 80 Hz spin: 30% of ~10⁻⁸ N

Orbit instability at polhode = orbit for drag free Gyro3

3

The Patch Effect

Possible Causes of Coupling

- 1. Rotor geometry
 - a. Mass unbalance: ~10nm (3×10⁻³ of gap)
 ⇒ Small compared to > 10% effects
 b. Surface waviness: ~10nm (3×10⁻³ of gap)
 ⇒ Small compared to > 10% effects
- 2. Trapped flux interacting with housing
 Three independent calculations
 ⇒ Effect too small by orders of magnitude
- 3. Non uniform potential of rotor surface
 ⇒ Patch effects consistent with data

- Variation of electric potential over the surface
 It can arise due to the polycrystalline structure
 It can be affected by presence of contaminants
 Modeled as dipole layer
- Patch fields present on rotor and housing walls
- Cause forces and torques between surfaces

Observations explained by patch effect of ~50-100 mV on rotor and housing

Patch Effect Investigations

Pre-launch investigation

STANFORD

- ◆ Contact potential differences ~ 0.1V 1V
- Patches mitigated/eliminated by minute grain size, 0.1 µm << 30 µm rotor-electrode gap
- Kelvin probe measurements on flat samples

>Additional ground-based investigations

- Work function profile via UV photoemission
- Detailed analytical modeling
- Kelvin probe measurements

Kelvin probe scans

Examples of Spatial Scans Gold-niobium on alumina (p-to-p 13 mV) Diamond-like carbon on beryllia (p-to-p 22 mV)

Indium tin oxide on titanium (p-to-p 6 mV) Titanium carbide on titanium (p-to-p 6 mV)

Contact potential difference in volts over 10 mm by 10 mm area (400 data points).

Kelvin probe

SEM image of rotor Nb film average grain size 0.1 μm

Work function polar plot, UV photoemission

Talks by Norna Robertson and Jordan Camp

Charge Measurement by Force Modulation WITH PATCH EFFECT

$$\begin{split} V_{P\pm} &= \left\langle V_{Pe\pm} \right\rangle - \left\langle V_{PR\pm} \right\rangle & V_{Pg} = \left\langle V_{gH} \right\rangle - \left\langle V_{gR} \right\rangle \\ F &\equiv F_{+} - F_{-} = \frac{A_{+}\varepsilon_{0}}{d_{+}^{2}} \left(V_{e+} + V_{Pe+} - V_{R} \right)^{2} - \frac{A_{-}\varepsilon_{0}}{d_{-}^{2}} \left(V_{e-} + V_{Pe-} - V_{R} \right)^{2} \\ F(\omega_{C}) &= \frac{2A\varepsilon_{0}}{d^{2}} \left[V_{R} - \frac{1}{2} \left(V_{P+} + V_{P-} \right) - \frac{\Delta d}{2d} \left(V_{P+} - V_{P-} \right) \right] V_{C} \cos(\omega_{C} t) \end{split}$$

 $P \Rightarrow$ patch potential average

 $R \pm / H \pm \Rightarrow$ electrode pair rotor/housing side

 $gH/gR \Rightarrow$ ground plane rotor/housing side

 \succ F(ω_c) dependent on V_{P±} and Δd

STANFORD Charge Measurement with Patch Effects

Relative position of gyroscope #3; same for all three axes

Ed Fei senior thesis

 $V_{RA} \neq V_{RB} \neq V_{RC}$ $V_{R(A,B,C)} = f\left(\Delta d_{(A,B,C)}\right)$

Gyroscope #3 potentials and their shifts due to miscentering

Patches on test mass and housing require additional measurements and modeling

STANFORD The Spin Averaging GP-B Gyroscopes

The Path to Future Experiments I UV Sources

Better UV source: UV LED

- Long lifetime >10,000 hours to date
- Lower power consumption
- Lower mass
- AC modulation up to 1 GHz

Talk by Ke-Xun Sun

Combinations of above

The Path to Future Experiments III Improved Technology and Operations

- 3. Control magnitude and time dependence of patch effects
 - Materials development
 - Ground testing
- 4. Extensive charge measurements and calibrations
 - Measurement frequencies must be different for different sensors
 - Single electrodes
 - Variable TM positions
 - Particle monitoring
- 5. Use improved position measurement and control of TM
 - → 3 pm/√Hz with optical read-out
 - Control position to <10 pm/√Hz with micro-thrusters

The Improved Charge Management System

A. Charge measurement

- Not required
- Frequency of measurement below SM band
- Continuous measurement

B. Charge generation (use UV LED)

- Continuous
- Frequency of discharging below SM band

C. Charge control loop

- Not required
- Frequency of discharging below SM band
- Continuous control

NASA- Stanford Gravity Reference NanoSatellites

Towards ultra high precision gravitation reference sensors and multi vehicle space interferometry

1 nrad/Hz^{1/2} grating

1 pm/Hz1/2 Grating Cavity Displacement Sensor

256 nm Deep UV LED

Roundest sphere and drag

•NASA-Ames has a spaceflight proven nanosatellite Platform which can accommodate and demonstrate technologies critical for implementing a low-cost, fast response Space Gravity Reference program

- Stanford has the gravity reference technologies and proven expertise and track record
- Under this collaborative effort.NASA will provide the spacecraft, payload integration, and mission ops support
- Stanford will provide the GRS Payloads and instruments

•Approximately one mission per year is planned, in a phased, iterative development approach, beginning in 2008

• Estimated total cost per mission is \$3-5M, depending on mission and technological complexity

The Program

Frequent launches on ride-along platforms Standard low cost bus configurations

12 - 24 month project duration

The Benefits

New science: Physical, Life, Engineering

Critical technology demonstrations

Fast advance of NASA mission objectives

Train engineers and scientists for the future GENESAT

Stanford NANOSAT

The First Planned Project:

UV LED Space Demonstration 2008-2009

23

Patent pending

Payload Configuration: Side View

Payload Functional Components

