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R T, The Relativity Mission Concept

"No mission could be simpler than Gravity Probe B.

... Just a star, a telescope, and a spinning sphere." — William Fairbank

Controlled experiment

Frame-dragging Effect
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Bottom Line

» GP-B has demonstrated that complex physics experiment work in space
» Seeing General Relativity Directly in a Controlled Experiment

Newtonian gravity would give horizontal (not sloped) data
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GP-B experience is invaluable for future missions



A ) mamonn, Present Statistical Error
and Consistency of Rate Estimates

GR predictions » Combined measurements of all 4 gyroscopes
Geodetic (NS) » Statistical error for single run 11 marcs/yr
6571+1 marcs/yr » Statistical error between runs 30 marcs/yr

FD + other (EW)

75+1 marcs/yr > 4 Gyroscopes consistency 97 marcs/yr

West-East Drift Rate All 4 Gyroscopes EW (Lense-Thirring & other)
net expected

-75 +/- 1 marcsecl/yr

Earth solar proper net
FD geodetic motion expected

-39 -16 -20 £ 1 -75 1

Run number

» Gyroscopes are consistent with one another and with GR predictions for
the frame-dragging and the geodetic effects to less than 97 marcs/yr.

» Statistical error is significantly smaller than the differences between
4 gyroscopes or between data runs: clear room for improvement!!




o] b e, Charge Management

 Charging Sources Ground Test/Analysis SM Results
* Levitation <1V test 200 — 500 mV
* He gas spin-up <1V test Not observed: < 20 mV
» Cosmic radiation ~ 0.1 -1 mV/day (GEANT) 0.1 — 1 mV/day

« Variation in cosmic radiation charging
« Shielding: Decreasing from Gyro #1 to Gyro # 4
* Solar flares

* Rotor charge controlled with UV excited electrons
* 2 UV Hg lamps (254 nm line)

« 8 UV switches Schematic of GP-B UV architecture
2 UV fibers per gyroscope . x 4 gyroscopes
UV Lamp A | I
: UV switch #1A
1 UV switch #1B
UVLampB | !

« Continuous measurement at the 0.1 mV precision

* Control to 5 mV meets requirement of 15 mV




wa  Charge Measurement by Force Modulation
' NO PATCH EFFECT

C, sicei+cg
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2A &, R = rotor
F (a)C) = ?VRVC COS(a)Ct) to O(Ad ) e+ = electrode pair
g = groundplane
uspersion < @praf —iree = 0(@c) =0 measure F(ar) A+/d+ = electrode pair area/spacing
> Wgupension = F (@) =0 measure d (e ) C = charge measurement
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rage7 | F(@c) proportional to Vi and V. and independent of 4d to O(4d)



w  mee  GP-B Gyro On-Orbit Initial Lift-off

First Indication of Gyroscope Charging

Initial gyro levitation and de-levitation
using analog backup system

Gyro2 Position Snapshot, VT=135835310.3
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Gyro “falls” 30 ym in 2.7 sec:

Equivalent to
1) SC drag of ~10> m-s-2
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SC drag excluded:
ape< 10°° m-s2 Fall time >9 sec

Time (sec)

rges | GYroscope levitates with ~ 200 mV — 500 mV charge
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Discharge of Gyral {ollowing HY Spin Axis Alignment
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Charging History and Rates

Nov. 16, 2004 Apr12, 2005 ) Gyro 1 Solar Flare

TTTTTTTTTTT

br

Charging rates to day 390 GOES11 Proton Flux (5 minute data) Bogini 2005 Jan 20 G000 UTG

10*E

Average
Charging Rate ~ Sun Spot 720

10 MeV

mV/day mV
Gyro 1 0.098+/-0.003 0.63+/-0.05
Gyro 2 0.114+/-0.003 0.74+/-0.05
10+

Gyro 4 0.152+/-0.003 1.15+/-0.05
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Intensity Monitor

Intensity Monitor
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UV Lamps Lifetime

UV Lamp A Intensity vs Operating Hours
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« UV lamp intensity decay time constant
~ 230 hours

« Large variability of discharge rates
between gyroscopes

 The GP-B Hg UV lamps met all
requirements




NAS) o mammn Experimental Observations
' Coupling of rotor-fixed frame to the GSS

Modulation at polhode frequency
0 > Z (telescope axis) bias: 2x10¢ N
e > Control effort at 1.3Hz spin: 30% of ~2x10" N

z
5
&
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g
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> Position & suspension voltage at 1.3Hz spin: 60nm,

e > Control effort at 80 Hz spin: 30% of ~10®¢N

» Orbit instability at polhode = orbit for drag free Gyro3

Drag-free controleffortand residual gyroscope acceleration (2004/2359-333)

N

FFT of Control Effort Control Effort (uN)

107 & ———

Polhode | ) Gyro CE inertial
e | «—Cravity Gradient; ¥
frequency i thrust 5V

.........................................

1
Residual gyro
acceleration

10 107"
Frequency (Hz)
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] e The Patch Effect

Possible Causes of Coupling
1. Rotor geometry

a. Mass unbalance: ~10nm (3x10-3 of gap) Consequences
= Small compared to > 10% effects » Polhode damping
b. Surface waviness: ~10nm (3x10-3 of gap) > Misalignment torque
= Small compared to > 10% effects — > Spin-down torque
2. Trapped flux interacting with housing » Inconsistencies in the
Three independent calculations charge measurements

= Effect too small by orders of magnitude

3. Non uniform potential of rotor surface
= Patch effects consistent with data

» Modeled as dipole layer
» Patch fields present on rotor and housing walls
» Cause forces and torques between surfaces

¢ It can be affected by presence of contaminants dI

housing wall surface

» Variation of electric potential over the surface
4 It can arise due to the polycrystalline structure _test mass surface

Observations explained by patch effect of ~50-100 mV on rotor and housing




vyl aeon, Patch Effect Investlgatlons

» Pre-launch investigation
+ Contact potential differences ~ 0.1V - 1V

+ Patches mitigated/eliminated by minute grai
size, 0.1 ym << 30 ym rotor-electrode gap

+ Kelvin probe measurements on flat samples
» Additional ground-based investigations

+ Work function profile via UV photoemission\
+ Detailed analytical modeling

+ Kelvin probe measurements
Kelvin probe scans Kelvin probe

Examples of Spatial Scans

Gold-nobivm on alumina {p-to-p 13 mV) iamaond-like carbon on berdla (pAo-p 22 my)

‘i o Work function polar plot,
KL l oo e UV photoemission

Indiurn tin cxide on thanwum (p-to-p & mY) Titanium carbide on titanivm {p-t

ety




s Charge Measurement by Force Modulation
WITH PATCH EFFECT

P = patch potential average
R+/H + = electrodepair rotor/housing side
gH /gR = ground plane rotor/housing side

» F(w:) dependent on V,, and Ad
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wa e Charge Measurement with Patch Effects

Relative position of gyroscope #3; same for all three axes _

x10~° Gyro3 DC miscentering Charge Measurement

Distanca (um)

v o P gt P AT O e e

Potantial{mV)

. o £3 2610 il s gl
g o T 51 6 N g 2 Y Tt g 5 W0 it R e i

A P gt P, W, o o 100 o 3 : a3 T Mg, S Ny R Ty, e VRA ¢VRB ¢VRC

Gyroscope #3 potentials and their shifts due to miscentering

Patches on test mass and housing require
page 16 additional measurements and modeling




we e The Spin Averaging GP-B Gyroscopes

. VRA '_/'_VRB '_/'_VRC
VR(A,B) = f(Ad(A,B))

Va

Via # Vg # Vic >Patches on test mass

ARSERLCCIY)| | . clectrodes required
VRA :VR = (Vl _VA+)—;(V2 _VA_)+AdA[(V1 _VA+)_(V2 _VA—)] for data mOdeIing

»With patches on test
mass and electrodes the
V. 4V GP-B data is insufficient

VRB :VR + (Vl _VB+ )-|2- (V2 _VB_) - AdB [(Vl _VB+ )_ (Vz _VB— )]

VRC :VR +V3 _%_Adc(vm _VC—)

for unique solution



A R The Path to Future Experiments |
UV Sources

» Better UV source:

+ Long lifetime >10,000 hours to date

+ Lower power consumption _
+ Lower mass

+ AC modulation up to 1 GHz

UV LED Performance | | [ Gaazhous |
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wa e The Path to Future Experiments |l
Charging Requirements

Qsa<10 C T sa= 3 hours Q requirement drivers
Qope< 10" C Tgpg =4 months a) Laurence force, b) kocQ?/d

1. Reduce the LISA frequency of discharging requirement

by 10 from 10+ Hz to 10 Hz

Now (10-1’C/s) / (10-13C) = 104Hz

+ Improve radiation shielding by 10 = 10" C/s to 108 C/s
Improve EMI shielding by 10 = 103 Cto 1012 C
Increase gap by 10 = 3 mm to 30 mm
Minimize patch effects on TM and housing

Combinations of above

* 6 o o

2. Reduce the LISA test mass potential requirement

by 50-100 from 2 mV to 100 - 200 mV

Now (10-13C) / (50x10-1°F) = 2x10-3V

+ Improve EMI shielding by 10 = 107" C/s to 108 C/s
+ Increase gap by 10 = 50 pF to 5 pF

P4 + Combinations of above




we e The Path to Future Experiments |l
Improved Technology and Operations

3. Control magnitude and time dependence of patch effects

+ Materials development
+ Ground testing

4. Extensive charge measurements and calibrations
+ Measurement frequencies must be different for different sensors
+ Single electrodes
+ Variable TM positions
+ Particle monitoring

5. Use improved position
measurement and control of TM

+ 3 pm/VHz with optical read-out

« Control position to <10 pm/\VHz with
micro-thrusters

10 "= § -
Page 20 0 : 10"
Fragquancy (Hz)



wa e The Path to Future Experiments IV
The Improved Charge Management System

A. Charge measurement Best
+ Not required
+ Frequency of measurement below SM band
+ Continuous measurement

B. Charge generation (use UV LED)

+ Continuous
+ Frequency of discharging below SM band

C. Charge control loop
+ Not required
+ Frequency of discharging below SM band
+ Continuous control

Page 21



NASA- Stanford Gravity Reference NanoSatellites

Towards ultra high precision gravitation reference
sensors and multi vehicle space interferometry

1 nrad/Hz'? grating
angular sensor

256 nm Deep UV LED

1 pm/Hz!2 Grating Cavity Roundest sphere and drag
Displacement Sensor free sensor

The Program
Frequent launches on ride-along platforms
Standard low cost bus configurations
12 - 24 month project duration

The Benefits
New science: Physical, Life, Engineering
Critical technology demonstrations

*NASA-Ames has a spaceflight proven nanosatellite Platform
which can accommodate and demonstrate technologies critical
for implementing a low-cost, fast response Space Gravity
Reference program

» Stanford has the gravity reference technologies and proven
expertise and track record

* Under this collaborative effort, NASA will provide the
spacecraft, payload integration, and mission ops support

» Stanford will provide the GRS Payloads and instruments

*Approximately one mission per year is planned, in a phased,
iterative development approach, beginning in 2008

» Estimated total cost per mission is $3-5M, depending on
mission and technological complexity

Roadmap

[ 2007 2008 2009 2010 2011

Technologies

Grating Displacement Tech. Integration
Drag Free Flight Other Capabilities

Micro/Nanothrusters Formation Flying
Platforms

[ 3U Cubesat /)

[ 6U Cubesat

| Microsatellite Sorties '

Launch Opportunities i
GeneBox ; Flown 16 July 2006
GeneSat-1; Flown 16 Dec 2006
Pharmasat-1; ~ Launch 10 Dec 2007 L L L "
2Q 08 1Q 09 3Q09 1Q 10 4Q 10 2Q 11 4Q 11

Overarching Goal: _ Provide Rewarding, Focused Objectives
for the Next Generation of Space Scientists and Technologists

pif

Falcon1  Minotaur | Atlas V Minotaur IV




74 Ypatent pending The First Planned Project:
= UV LED Space Demonstration 2008-2009

Charge management for high precision GRS
Calibration source for UV and X-ray telescope [Gmerbec]=> [ v s

. . 9cm
Telescope surface and window de-charging [ Lower Deck == | votage Prove _
Life maintaining system for manned space flight C tematniemes

18 cm

Payload Configuration: Side View

Nick Leindecker ,
UV Light Power Electrode Analog
Monitors Stabilization Driver (1) Power
[ R o S e ;’” ............... R s Circuit Supply
! ; MO i & 6442 hours
! i : > g ; & 3700 hours v uv IO Interface
09k N o b I{, : | —&— 250 hours :C:___-—‘ LEDs Module LED FPGA
| § . ‘ i i —8— 0 hours _ Drivers
[ | R . S 'I.':' ST ¥ . p— S SRS SR H i
H 5 I.'I m. cal Fiber Phas_e Waveform Elgcirode Digital Power
; : . nessing Senswt!ve Generator Driver (2) Supply
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10" :
> Spinning sphere, 10 Hz —y
» 2 Dimensional '
» 6 Optical sensors n
» Experimental laser noise ?Ié
» 50 nm position noise Bep
» 50 nm surface roughness F
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