

The Next Generation Charge Management Technology UV LED AC Charge Management Systems for LISA and LIGO

Ke-Xun Sun, Sei Higuchi, Nick Leindecker, Gregg Harry[§], Ashot Markosyan, Roger Route, Saps Buchman, Robert L. Byer Stanford University, [§]MIT

2007 Workshop on Charging Issues in Experimental Gravity MIT, July 26-27, 2007

Outline

- UV LED based AC charge management
 - **GP-B**,
 - ST7, LPF, STEP, LISA
 - LIGO (Initial, Enhanced, and Advanced LIGO)
 - UV LED characteristics
- System development
 - UV LED lifetime testing
 - Electronics development
 - UV Irradiation Tests
- Next Steps
 - UV LED
 - Kelvin Probe
- Stanford applied patent for UV LED based AC charge management technology

UV LED AC Charge Management Research Reference Selection

[1] K.-X. Sun, B. Allard, S. Williams, S. Buchman, and R. L. Byer, "LED Deep UV Source for Charge Management," presented at Amaldi 6 Conferences on Gravitational Waves, June 2005, Classical and Quantum Gravity, 23(8):S141-S150, 2006.

[2] K.-X. Sun, S. Higuchi, A. Goh, B. Allard, D. Gill, S. Buchman, and R. L. Byer, "Spectral and Power Stability Tests of Deep UV LEDs for AC Charge Management," 6th LISA International Symposium, GSFC June 2006, AIP proceeding vol. 873, pp.215-219

[3] K.-X. Sun, S. Higuchi, B. Allard, D. Gill, S. Buchman, and R. L. Byer, "LIGO Test Mass Charging Mitigation Using Modulated LED Deep UV Light, " LIGO Science Collaboration (LSC), OWG & SWG Joint Meeting, Hanford, Washington, March 22, 2006, LIGO Documentation G050143-00-Z

[4] Stanford University (K.-X. Sun, B. Allard, S. Buchman, and R. L. Byer), Patent Application on UV LED AC Charge Management, initial filing May 2006

[5] K.-X. Sun, G. Allen, S. Buchman, R. L. Byer, J. Conklin, D. DeBra, D. Gill, A. Goh, S. Higuchi, P. Lu, N. Robertson, and A. Swank, "Modular Gravitational Reference Sensor for High Precision Astronomical Space Missions," AAS/AAPT joint meeting 2007, Session 074.07, Seattle, Washington, January 5-10, 2007.

Ke-Xun Sun visited University of Washington by invitation from Scott Pollack, provided further information on UV LED AC charge management, and discussed collaboration in this area.

[6] K.-X. Sun, N. Leindecker, S. Higuchi, A. Markosyan, R. Route, S. Buchman, R. L. Byer, G. Harry, J. Hines, J. Goebel, and E. Agasid, "Development of UV LED Based AC Charge Management Systems For Gravitational Wave Detectors", The 7th Edoardo Amaldi Conferences on Gravitational Waves, Sydney, Australia, 8-14 July 2007.

LISA Charge Management Requirements May Become More Stringent Due to GP-B Experience

Category	Limit (C)	Assumptions
Lorentz Noise	4x10 ⁻¹¹	$\eta = 0.01, f = 10^{-4} \text{ Hz}$
Displacement and voltage noise	4x10 ⁻¹¹	$\Delta d = 10 \ \mu \mathrm{m}, \ \delta V = 10 \ \mu V / \mathrm{Hz}^{1/2}$
Charge noise	1.4x10 ⁻¹¹	$f = 10^{-4} \text{ Hz}$
Stiffness	4x10 ⁻¹³	$\Delta d = 10 \ \mu m$
Dynamic Range (GP-B Experiences)	10 ² Normal 10 ⁵ Decaging	Charging rate: 100 protons/s Decaging 1 nC/hour

First four requirements: Sumner et al, Class. Quantum Grav. **21** (2004) S597–S602 Dynamic range requirement: GP-B communication

- $Q_c \sim 10^{-7} \text{ C/m}^2$
- Charging rate $Q_c \sim 10^{-7}$ C/day
- $N_e \sim 10^{12}$ electrons/day
- Photoelectric "Q. E.": η~10⁻⁵
- UV photons required: N=10¹⁷
- $P_{UV} = Nhc/\lambda T = 8.9 \text{x} 10^{-7} \text{ W}$
- $P_{UV} \sim 1 \ \mu W$ (average power over a day)
- Dynamic Range ~ 1000, P_{UV} ~ 1 mW (Peak power)

GP-B Charge Management R&D at Stanford

GP-B charge management (Buchman 1993)

- **R&D since 1990's**
- Non-contact charge transfer by UV light
- Critical to GP-B mission success
 - > Initial gyro lifting-off
 - > Continuous charge management during science measurement

[Buchman 1993] Saps Buchman, Theodore Quinn, G. M. Keiser, and Dale Gill,
"Gravity Probe B Gyroscope charge control using field-emission cathodes,"
J. Vac. Sci. Technol. B 11 (2) 407-411 (1993)

LIGO

Modular GRS Architecture

Presented at LISA 5th Symposium July 2004

- Designed to achieve higher performance for Advanced LISA and BBO class space GW detectors
- Single proof mass
- Modularized, stand-alone GRS
- •GW detection optics external to GRS
- External laser beam not directly shining on test mass
- Internal optical sensing for higher precision
- Large gap (> 2cm) for better disturbance reduction
- 3-dim sensing & true drag-free
- Determine the geometric center and **center of mass**

Sun, Allen, Buchman, DeBra, Byer, CQG (22) 2005 S287-S296

Mercury Lamp Based Charge Management System

GP-B CMS in Flight

- 2 Hg Lamps
- Weight: 3.5 kg
- Electrical Power 7~12 W
 - (1 lamp on, 5 W for lamp, 5 W TEC cooler)

LTP CMS in Development

- 8 Hg Lamps
- Weight: ~5 kg
- Electrical power 12~15 W
 (for 2 lamps on, ~4 W for lamp, ~4 W for control electronics)

"LED"--- Light Emission Diode

UV LED Charge Management System

- Weight: 0.3 kg (including electronics)
- Electrical power ~1.5 W (0.1 W/LED. Est. power for control electronics ~1.2 W)
- Fast switching ($<0.1 \mu$ S), wide selection of modulation frequency and duty ratio
- AC charge management at frequencies *out-of signal band* (e.g. at cap bridge freq.)
- Various AC charge management techniques for better performance

- GP-B heritage
- Au coating on proof mass and housing to simulate LISA GRS
- Fiber connected UV LED driven by modulated current source
- Housing electrode modulation phaselocked to UV modulation
- UV light shining on proof mass and reflected onto housing electrode
- Sensitive electrometer to measure the proof mass potential

Category	UV LED CMS	Mercury Lamp CMS
Electrical Power Consumption	0.5 W	15 W
EMI	Minimal	Large due to RF excitation
Weight	0.3 kg	3.5 kg
Dimension of the CMS system	10 cm x 8 cm x 3 cm	17 cm x 13 cm x 17 cm
UV emission power	~120 µW	~100 µW
UV Power at the fiber tip	~16 µW	~11 µW
UV Wavelength, central	257 nm	194 nm & 254 nm
UV Wavelength, spread	12.5 nm	Doppler Broadening
Fast modulation capability	Easy – Intensity, pulse	Difficult
	train frequency and	
	phase, etc.	
Charge management method	AC & DC	DC only
Charge management frequency	Out-of signal band	In signal band
Equivalent dynamic range	100,000	100
Charge management resolution	high	low
Charge management speed	high	low

Positive Charge Transfer

UV LED and bias voltage modulated at 1 kHz

Negative Charge Transfer

UV LED and bias voltage modulated at 1 kHz

AC Charge Management Shows Promising Characteristics

UV LED and bias voltage modulated at 10 kHz

UV LED Lifetime Exceeds 8,200 Hours (Over a Year)

- Wavelength shift readout less than +/- 1 nm
- Measurement variance within spectrometer error

- PCB form factor fits into LIGO wavefront sensor box
- Circuit design allow modulation faster than commercial instrumentation sets
- Now operated above 100 kHz
- UV LED driver
- Photodetection circuit on board
- Electronics configuration allows easy interface with LIGO electronics structure
- Easy interface with LTP/LISA capacitive sensing mechanism

- Apply AC charge management technique to LIGO
- New UV LED electronics driver enable faster modulation beyond LIGO detection band

System	Frequency	
LISA GW Band	30 µHz ~ 1 Hz	
LIGO GW Band	10 Hz ~ 1kHz	
LIGO GW High Frequency	37.5 kHz	
LTP/LISA Capacitive Bridge	100 kHz	
UV LED Driving Electronics	100 kHz (with adjustable duty ratio)	

Next Steps

 UV charge management works The good news UV worked for GEO, easily UV is the non-contact charge management tool Development LIGO-targeted UV system More sophisticate UV LED system rivaling that for what we did for LISA UV LED sources with flexibility Modulation optimization Wavelength selections beyond 253.7 nm Hg line Full spectrum LED available from 248 nm and longer wavelength 		 Voltage probe development GSFC Kelvin probe will be commissioned after accelerated moving request. (It is a PZT driven buzzer) LIGO needs an independent, vibration-less voltage probe for test mass charging concerns Some possible schemes 	
- Customization for eLIGO and advLIGO	Ongoing	- Will use a second chamber for technology development Ongoin	
 UV Irradiation Tests: Continued UV irradiation tests on LIGO m coatings The doubt from coaters increased absorpti illumination Are there any damaging effects on oxide coati What is the UV power threshold beyond safe of management? What is the wavelength dependence/threshold What is the modulation dependence? Alternative UV scheme Wavelengths that fill in the gap between effect (such as 355 nm etc) Hidden UV source as an electron control deviation. 	irrors AND on loss by UV ngs? charging ? tiveness and damage	 Modified UV scheme to mitigate additional risks UV illumination from side or the back of the mirror UV light box to contain UV radiation Other wavelengths Alternative charge management schemes Sharp pin discharge No UV or combined with UV: Whatever is good for LIGO Fluoride coating (CaF₂ etc.) Collaboration with other LIGO efforts In-situ UV illumination for cavity ring down In-situ UV illumination for Q-measurement Etc 	

22

The Experimental Setup

Experimental Setup for UV Irradiation Tests

Initial LIGO Mirror Loss Measurements after One Week UV Irradiation

The Experimental Setup (II)

- Mirror Inside
- Mirror holder: Stainless steel wire

Exact position measurement was difficult

Adv. LIGO Laser Loss Measurement Before UV Illumination

Loss in normal region: 4~6 ppm (Only peak value is calibrated)

Long scan: 1 ~ >50 ppm Base line hump Large number of scatters

$\alpha_0 = 6.3 \text{ ppm}$ D010068 Rev B, z-1, y = 28.5 mm D010068 Rev B, z-1, W_P =8.51 W 50.0 90.00 45.0 80.00 Absorption [ppm] 40.0 Absorption [ppm] 70.00 35.0 60.00 30.0 50.00 25.0 $\alpha_0 = 6.0 \text{ ppm}$ 40.00 20.0 30.00 15.0 20.00 10.0 10.00 5.0 0.00 0.0 11 12 13 14 15 2 6 8 10 0 Δ Distance [mm] Distance [mm]

Laser Damage in an Area, But Uncertain if it is the UV Illuminated Area

- Laser power ~9.7 W, Spot size 75 μm
- Laser intensity ~2-4 kW/mm²
- Laser burn over 2 mm length
 - Uncertain if it is UV illuminated area
 - Laser power is too high
 - The sample has defects packed in the region
 - Calibration needs to be checked: the nontransmitted region should have higher losses

- Scan with lowered laser power ~1W, no laser burn is observed
- Shows high loss points across the region
- Similar defect distribution observed for nonilluminated region
 - The point defects may trigger laser burn

Laser loss measurement needs improvement

- Deep UV irradiation effects
 - Fused silica substrate so far so good
 - Inconclusive on LMA Adv. LIGO coating
 - GEO optics were fine with UV irradiation by an 800mW Mercury lamp
 - Prudent recommendation: Do not use high flux UV on Adv. LIGO mirrors
 - Devise indirect UV illumination scheme
- High intensity, pulsed laser beam at 355 nm wavelength will:
 - Damage oxide coatings in vacuum
 - Not damage oxide coatings in oxygen rich environment
 - Damage threshold is being investigated
- Damage threshold investigations at different wavelengths are of long term interest to Adv. LIGO
 - Deep UV (~254 nm, good for Au photoelectric effect)
 - UV, but not deep UV (photoelectric effect wavelength for other metals)

- CaF₂Fluoride Coating
 - Often used in UV optics for lithography at 193 nm, high UV damage threshold
 - Electrically conductive
 - Reasonable Q
 - Thin layer CaF₂ may help charge management
- Gold coating
 - Help both thermal and charge control
 - 100 nm (needed by thermal control) Au coating will be opaque to UV, eliminating UV damage problem
- Other coating
 - Aluminum coating (work function 4.2 eV vs. 5.3 eV for Au) allows softer UV

Local Conductive Coating Pattern May Help

LIGO

Possible System Configuration for Adv. LIGO

Many Options to fit the charge management system into Adv. LIGO

"Charge Management Ring" fits into the suspension assembly?

Will work with Rich, Gregg on LASTI related design and deployment

LIGO

- Field concentration around a sharp pin
- Discharge at the sharp tip
- Good for high voltage objects like that in LIGO test mass
- Bidirectional charge/discharge possible

Mid Vac Chamber Probe and Charge Management Experiment

High Vac System UV Irradiation Effect Assessment

Stanford LISA/MGRS Team Moved to New Labs

1_MIT_Charging_v2a_070727.ppt

36

New optics labs, housing total 6 optics tables, enables multiple optics experiments

Kelvin probe, on loan from GSFC, for GRS surface effects studies

Stanford applied patent for UV LED based AC charge management technology

1_MIT_Charging_v2a_070727.ppt

37

Kelvin Probe Setup @ Stanford Coming Along

Kelvin Probe in Operation Soon

Small Satellites Provide New Science and Technology Opportunities

- Small Satellites
 - True space flights
 - Economical access
 - Ride along on main flights
- Payload requirements
 - Lightweight
 - Low power
 - UV LED Charge management System will fit and operate

UV Satellite Payload Configuration

Upper Deck Top View

41

- UV LED AC charge management concept and demonstration
- UV LED charge management system is under active development
- UV LED lifetime exceeds 8,200 hours
- LISA and LIGO specific techniques
- UV irradiations test result for more testing
- LIGO work will be under OWG coordination, participating a range of collaborations

