LIGO

Diffraction effect in Stable Michelson cavity

Power distribution on RM

LIGO

G070607-

Field on RM(37cmBS) - Field on RM(big BS)

Astigmatism of field on RM

 $Exp(-ikr^2/(2R))$

G070607-01-E

LIGO

Power loss on MMT3 (no baffle, ITMY<->SRM case)

Loss under different conditions

MMT aperture (cm)	beam size on ITM (cm)	Coupled cavity	loss on MMT3 (ppm)
26cm	6cm	Y-arm + SRM(*)	330
26cm	6cm	X-arm + SRM(*)	600
28cm	6cm	Y-arm + SRM	140
26cm	5.5cm (**)	Y-arm + SRM	47
26cm	5.5cm (**)	X-arm + SRM	60

^(*) When a baffle is placed in front of ITMY, Y-arm+SRM configuration comes very close to X-arm+SRM case. (**) http://ilog.ligo-wa.caltech.edu:7285/advligo/Test_Mass_Beam_Sizes, asymmetric case with 5.5cm on ITM and 6.2cm on ETM.

With the baffle size of Mike's choice - 214mm x 249mm - the beam going through a baffle is cut off by 250ppm. If the baffle size of 1cm larger in both direction (224mm x 259mm), the cutoff is 55ppm. The numbers in the above table were calculated without baffles.