

Upgrade of Thermal Compensation System for Enhanced LIGO

Darcy Barron University of Illinois at Urbana-Champaign Mentors: Phil Willems, Rana Adhikari, Tobin Fricke

LIGO-G070643-00-R

LIGO Main laser beam creates thermal distortions in optics

- Main thermal effects are thermoelastic deformation, thermal lensing
- Create wavefront distortions that decrease gravitational wave strain sensitivity
- Optics designed to operate with a certain amount of thermal lensing based on absorption, laser power
- Absorption of mirrors difficult to predict
- Thermal compensation required to achieve level of heating for correct radius of curvature

- Remotely heat optic
- Annular or central heating pattern

LIGO Current heating pattern at LIGO sites

	H1	H2	L1
ITMX	Central	None	Annular
ITMY	Central	Annular	Central

LIGO upgrades will require more TCS power

- Laser input power will increase from 7 W to about 35 W for Enhanced LIGO
- Power circulating in cavities will increase from 15 kW to about 64-80 kW for eLIGO
- Increased heating requires more thermal compensation power
- All optics will require annular heating

Λ

TCS Upgrade Plans

Increase power from 10 W to 35 W Replace annular mask with conical optics

http://www.wavelength-tech.com

LIGO Intensity noise couples to interferometer noise

- Intensity fluctuations in CO2 laser causes temperature fluctuations on optic which convert to displacement noise
 - » Expansion of optic
 - » Change of index of refraction
 - » Bending of optic

Λ

Radiation pressure also causes noise

LIGO Intensity noise couples to interferometer noise

LIGO Increased laser power requires intensity stabilization

LIGO Increased laser power requires intensity stabilization

Noise hunting

- Stabilize photodiode mounts, laser mount
- Make low-noise preamplifiers
 - » Changed from battery to power supply
 - » Thin-film resistors
- Determine photodiode structure

Preamplifier Noise Spectra

LIGO

Photodiode structure may contribute to sensor noise

- Inhomogeneity in photodiode sensitivity will create noise if beam is moving
- Examination with microscope shows no visible structure
- Measuring voltage vs. position shows peaks in response
- Automated scanner will measure response over surface

Future Plans

- Stabilize intensity to acceptable level
- Set up conical lenses to create annular heating shape
- Plan to upgrade at sites in early 2008