

Update from LIGO Laboratory

LIGO-Virgo Collaboration Meeting

Albert Lazzarini

Hannover, Germany October 22-25, 2007

LIGO Laboratory Update Outline

- End of S5
- Interim S5 eLIGO activities
- Enhanced LIGO status
- Advanced LIGO status
- Continuation of LIGO Operations 2009 2013
- Outreach

LIGO S5 Run Has Been Successfully Completed!

In November 2005 we began S5 ...

Since Jay's July report:

 On 24 July -- LLO - LHO site-site coincidence exceeded 1 year of observation in science mode

Source: D. Signing weekly report, 24 June 2007

 On 21 September -- L1+H1+H2 3X coincidence exceeded 1 year of observation in science mode

Source: D. Sigg ilog weekly report, 03 October 2007

S5 and SR1 officially ended UTC 00:00 1 October

Triple-coincidence Science Mode Observation Time Accumulation vs. Calendar Time

Post - S5 & Pre-eLIGO Planned Activities Fred Raab appointed "czar" & coordinator

The Post S5 Era

- S5 close-out activities will occupy October
 - Calibrations
 - Signal injections & environmental injections
 - Optics characterizations
- Enhancements to initial LIGO (4 km interferometers) will start at end of October (Enhanced LIGO, eLIGO)
 - Installation phase until Jan2008
 - Commissioned by Jan 2009, observe 2009-2010
- H2 (2 km interferometer) Astrowatch program in conjunction with GEO600
 - Minor improvements to H2 planned during the Enhanced LIGO installation phase
 - Provide best-effort coverage during 2008 2009 inter-run period between \$5 and \$6
 - Plan: 1 afternoon and 1 owl shift coverage, led by LSC students
 - Partial support will be provided by the Laboratory for those students committed to 6 month or longer service

The *next* Science Run: Enhanced LIGO and S6

- In 2005/2006 LIGO developed a concept to upgrade of the 4 km interferometers
- Laboratory commitment to upgrade made after August 2006 internal planning review
- Schedule status in September 2007 showed that project is on track
- e-LIGO team has been cutting metal & building
 - Output mode cleaner (OMC) & suspension;
 - Seismic isolation for detection system being fit-checked at vendor, ready for cleaning & delivery to LLO;
 - Lasers
 - Thermal compensation upgrade in progress
 - Main laser (PSL) upgrade to 35W using Advanced LIGO front-end
 - Contributed by GEO
 - First unit for testing received at Caltech in September

Limiting noise sources for an enhanced detector are understood

35 W Laser

- 3.5x increase in power
- The "front-end" of the AdL laser
- Supplied by LZH/AEI as part of Adv. LIGO

- 35 W Laser
 - 3.5x increase in power
 - The "front-end" of the AdL laser
 - Supplied by LZH/AEI as part of Adv. LIGO
- High Power Input Optics
 - AdL EO Modulators (UF)

35 W Laser

- 3.5x increase in power
- The "front-end" of the AdL laser
- Supplied by LZH/AEI as part of Adv. LIGO

High Power Input Optics

- AdL EO Modulators (UF)
- AdL Faraday Isolators (UF & IAP, Russia)

35 W Laser

- 3.5x increase in power
- The "front-end" of the AdL laser
- Supplied by LZH/AEI as part of Adv. LIGO

High Power Input Optics

- AdL EO Modulators (UF)
- AdL Faraday Isolators (UF & IAP, Russia)

DC Readout of GW Strain

- AdL readout scheme (DC instead of RF)
- AdL Output Mode Cleaner cavity

35 W Laser

- 3.5x increase in power
- The "front-end" of the AdL laser
- Supplied by LZH/AEI as part of Adv. LIGO

High Power Input Optics

- AdL EO Modulators (UF)
- AdL Faraday Isolators (UF & IAP, Russia)

DC Readout of GW Strain

- AdL readout scheme (DC instead of RF)
- AdL Output Mode Cleaner cavity

35 W Laser

- 3.5x increase in power
- The "front-end" of the AdL laser
- Supplied by LZH/AEI as part of Adv. LIGO

High Power Input Optics

- AdL EO Modulators (UF)
- AdL Faraday Isolators (UF & IAP, Russia)

DC Readout of GW Strain

- AdL readout scheme (DC instead of RF)
- AdL Output Mode Cleaner cavity

35 W Laser

- 3.5x increase in power
- The "front-end" of the AdL laser
- Supplied by LZH/AEI as part of Adv. LIGO

High Power Input Optics

- AdL EO Modulators (UF)
- AdL Faraday Isolators (UF & IAP, Russia)

DC Readout of GW Strain

- AdL readout scheme (DC instead of RF)
- AdL Output Mode Cleaner cavity

AS detection in vacuum

- AdL HAM SEI system in HAM6
- OMC on AdL double suspension
- In-vac AdL photodetectors
- Isolation septum with window

35 W Laser

- 3.5x increase in power
- The "front-end" of the AdL laser
- Supplied by LZH/AEI as part of Adv. LIGO

High Power Input Optics

- AdL EO Modulators (UF)
- AdL Faraday Isolators (UF & IAP, Russia)

DC Readout of GW Strain

- AdL readout scheme (DC instead of RF)
- AdL Output Mode Cleaner cavity

AS detection in vacuum

- AdL HAM SEI system in HAM6
- OMC on AdL double suspension
- In-vac AdL photodetectors
- Isolation septum with window

Thermal Compensation

Upgraded power & beam shaping

35 W Laser

- 3.5x increase in power
- The "front-end" of the AdL laser
- Supplied by LZH/AEI as part of Adv. LIGO

High Power Input Optics

- AdL EO Modulators (UF)
- AdL Faraday Isolators (UF & IAP, Russia)

DC Readout of GW Strain

- AdL readout scheme (DC instead of RF)
- AdL Output Mode Cleaner cavity

AS detection in vacuum

- AdL HAM SEI system in HAM6
- OMC on AdL double suspension
- In-vac AdL photodetectors
- Isolation septum with window

Thermal Compensation

Upgraded power & beam shaping

UPGRADES ARE COMMON TO THE ADVANCED LIGO PROJECT

eLIGO Schedule

Advanced LIGO

- MREFC project for \$209M ...
 - Second generation of detectors in LIGO
 - Factor ~10X in amplitude sensitivity (over S5 Initial LIGO)
 - Factor ~4X lower frequency 'wall'
- Mostly quantum limited at highest power & midrange frequencies
 - Recombined Fabry-Perot Michelson
 - ~20X higher input power
 - Signal recycling → tunable
- For lower power & lowest frequencies, limited by gravitational gradient, thermal noise limits
 - 40 kg fused silica masses
 - Fused silica suspension
 - Aggressive seismic isolation

Progress Technical advances

- Full scale prototyping of mechanical systems
- Tests of 'DC readout'
- Laser production
- Understanding of coating scatter
- Systems design

Status of Advanced LIGO

- Baseline Review in June 2006
 - Review committee gave us high grades, agreed that we're ready to start construction
- Follow-on update to Baseline Review in June 2007
 - Review responses to recommendations from 2006 review
 - Committee confident that Advanced LIGO was prepared to move into construction phase
- Follow-on to follow-on to Baseline Review in November 2007
 - "Mini-status-review" appended to NSF LIGO Laboratory Annual Review
 - Required readiness review prior to release of funding by NSF...
- Construction start awaits the conclusion of the budget process for FY08 in Washington....
 - If funding starts as expected ...
 - Breach vacuum in 2010 (termination of the S6 eLIGO observational run)
 - Start commissioning 1st interferometer for Advanced LIGO in 2013

Continuing operations of LIGO Laboratory: 2009 - 2013

- New Cooperative Agreement with NSF
- 5-year period FY2009-FY2013 is concurrent with construction of Advanced LIGO
- Proposed scope:
 - Operation of interferometers for S6 with enhanced LIGO
 - Data analysis and science from S5 and S6
 - Expanded education and outreach
 - Preparing to operate Advanced LIGO, accepting first subsystems & interferometer(s) for tuning (2012-2013)
 - Targeted R&D to reduce risks for Advanced LIGO, for improvements to Advanced LIGO and for future capabilities
- NSF Annual Review will focus on proposed work & scope
 - ~\$160M (Advanced LIGO has separate construction funding)
 - 6 8 November at Caltech

Major outreach strategies include field trips, on-site public events, off-site activities and teacher professional development programs

Outreach activities
engage the ethnically
diverse populations
that surround
the Observatories

The LLO SEC illustrates the power of outreach partnerships

Docents in Training from Southern University

LA GEAR UP provides access to low performing schools

LIGO Hanford programs rely on partnerships to fuel growth

- Goal: A science education center for Hanford
 - Build on the successful SEC model at Livingston
- Timing: Take advantage of the planned LHO shutdown for Advanced LIGO installation (~2011-2012)

LIGO Laboratory at Caltech

Summary of important news

- S5 was successfully completed
 - Data analysis is in full swing
- Enhanced LIGO is around the corner!
 - Metal being cut, looks in good shape and on track for 2009 startup
- Advanced LIGO ready to start construction in FY2008
- Outreach program continues to grow and have an impact on the local communities surrounding the observatories
 - SEC for LHO being strategized
- NSF Review of laboratory proposal for continued operations 2009-2013 (during Advanced LIGO construction) scheduled in two weeks at Caltech

