LIGO
 SIS

AdvLIGO Static Interferometer Simulation

Hiro Yamamoto, Caltech/LIGO

- SIS Basic
" motivation
" physics
- Using SIS
" configurations
" actions
- Simulation of Stable Michelson Cavity
» String focusing needs adaptive FFT window structure - N and W
" Diffraction in a short cavity

SIS Basic Motivation

- AdvLIGO design tool
- Optics configuration trade study
- Tolerance of radius of curvature of COC mirrors
" Yi Pan's estimation of $2076+3 \mathrm{~m}-1 \mathrm{~m}$ too stringent
- Surface aberration
" Requirements of the surface quality to satisfy the limit of loss in arm, total of 75ppm
" Loss due to dusts
- Subsystem performance simulation
" TCS, ISC, COC, AOC, ...
- Parametric instability
" highly distorted field, hard to be expressed by simple functions

SIS Basic Requirement

- Details of Optics
" surface map, size, flat, wedge angle, etc
- Flexibility
" Various optics arrangements
- Physics
" Realistic locking by using error signals
" Signal sideband generation
" Built-in thermal deformation function
- Analysis tool
" beam profiler
" mode analysis

SIS Basic
 Phsysics

-Lock

```
    Error signal = imag( CR*SB ) ~ imag( CR * promptly reflected CR )
```

- Signal Sideband Generation

$$
\begin{aligned}
E_{r e f}(x, y, t) & =\exp \left(2 i k \delta(x, y) \cdot \sin \left(\Omega_{A F} t\right)\right) \cdot \exp \left(i \omega_{0} t\right) \cdot E_{i n}(x, y) \\
& \approx\left\{\exp \left(i\left(\omega_{0}+\Omega_{A F}\right) t\right)-\exp \left(i\left(\omega_{0}-\Omega_{A F}\right) t\right)\right\} \cdot k \delta(x, y) \cdot E_{i n}(x, y) \\
& +\exp \left(i \omega_{0} t\right) \cdot E_{i n}(x, y)
\end{aligned}
$$

THERMOELASTIC(beamSize, Psubs, Pcoat [, T0]) THERMALPHASE(beamSize, Psubs, Pcoat [, T0])

Parameters: power or rate
-Random surface - 2D surface with $\mathrm{f}^{\text {-power }}$
NOISESPEC(rand_seed, rms, power, WykoIndex)
G070659-00-E
LSC-Virgo meeting @ Hannover on October 25, 2007

SIS Basic Program implementation

- Object oriented code using C++
» ease of modification, adding compensation plate, degenerate to nondegenerate Michelson cavity, etc
" e2e code reused
- FFT with adaptive grid size
" fftw for FFT calculation
" The beam size changes in a concentric configuration
" Mode matching telescopes can strongly focus beams
" Use of different number of grids (128, ..., 2048)

SIS Basic Interface

- Specification of distribution
" HR / AR, surface / transmission / reflection and any other maps
" data file: DATAFILE(filename)
- mixture of different formats
- no need to make specific grid format
" mixture of input data and special functions
- 0.1 * DATAFILE(data) + THERMOELASTIC() + rr / (2*RH_ROC)
- Loop
» scan : angle = angle0 + omega*iLoop; pos = pos0 + vel*iLoop;
" Thermal deformation development
" Statistical analysis of surface specified by RMS
- e2e style interface
" recording and playback

Using SIS workflow

Using SIS specification file

```
ITM.opt.T = 0.005
ITM.opt.R = 1 - ITM.opt.T
ITM.opt.ROC = 1971
ITM.opt.trans_phase = THERMALPHASE( beamWidth, PsubsPwr, PcoatPwr )
ITM.opt.HR_phase = THERMOELASTIC( beamWidth, PsubsPwr, PcoatPwr ) + rr/
(2*ROC_TCS) + DATAFILE( ITMMAP.dat )
ETM.opt.ROC = 2191
ETM.oscillation.amplitude = 1e-15 % 1e-9*x for rotational oscillation
ETM.opt.HR_phase = THERMOELASTIC( beamWidth, PsubsPwr, PcoatPwr ) + rr/
(2*ROC_TCS) + DATAFILE( ETMMAP.dat )
inputBeam.beamType = "LG"
inputBeam.power = 1
inputBeam.waistSize = 0
inputBeam.waistPosition = 0
inputBeam.matchToCavity = 1 % calculate waistSize and waistPosition to match
with the cold cavity
```


Using SIS main menu of actions

Using SIS support functionality

SIS> Type "name" to choose item(s) >> help

1) @(filename
@)
saves key strokes in filename
2) @REPEATBEGIN Nbegin Nend
@REPEATEND
to define repeat process
Commands between these two @ are
repeated Nend-Nbegin times,
or variable iLoop goes from Nbegin to Nend-1.
iLoop can be changed in simSpec, together with iLoopEnd, the end of the loop
3) @PRINT val1 val2 ...
print values and
@PRINT filename << val1 val2
stores values in filename. Values are
appended to
existing file, not replace.
4) If a filename contains @s, it is replaced
by the numerical value of iLoop.
Power@@.dat is replaced by Power00.dat
etc.
Number of @s is the number of digits.
5) @@line1; line2; lineN
is the same as entering to simSpec followed by
typing line1, line2, etc, and exit @@ITM.opt.ROC = 2000; ETM.opt.ROC = 2000

Using SIS modeAmp : mode analysis

Using SIS
 Random phasemap and loop

Using SIS Signal generation by map

- Investigating a Parametric Instability in the LIGO Test Masses
- SUFR project by Hans Bantilan, mentored by Bill Kells » G060385-00-Z
- Simulate a stationary field for a given acoustic mode, instead of using modal expansion, to calculate the overlapping integral
- Combined with Dennis' FEM package to calculate acoustic modes
- 9061 modes for $\mathrm{f}<90 \mathrm{KHz}$

LIGO
 Using SIS saveField : k space distribution

Diffraction effect in Stable Michelson cavity

ITM.opt.AR_trans =
if(pow (2*x/0.214,2)+pow(2*y/0.249,2) < 1, 1, 0)

ROC $=31.059 \mathrm{~m}$
Aperture $=26 \mathrm{~cm}$
MMT3

Aperture $=37 \mathrm{~cm}$
thickness $=6 \mathrm{~cm}$
SB
MMT2
$R O C=1.856 \mathrm{~m}$

$$
\mathrm{N}=512, \mathrm{~W}=70 \mathrm{~cm}
$$

MS-RM R $=1440 \mathrm{~m}$

$$
\mathrm{ROC}=2076 \mathrm{~m}
$$

$$
\text { Aperture = } 34 \mathrm{~cm}
$$

ITMt
ETMt

Field on RM(37cmBS) Field on RM(big BS)

Loss under different conditions

MMT aperture (cm)	beam size on ITM (cm)	Coupled cavity	Ioss on MMT3 (ppm)
26 cm	6 cm	Y-arm + SRM(*)	330
26 cm	6 cm	X-arm + SRM(*)	600
28 cm	6 cm	Y-arm + SRM	140
26 cm	$5.5 \mathrm{~cm}\left({ }^{* *)}\right.$	Y-arm + SRM	47
26 cm	$5.5 \mathrm{~cm}\left(^{* *)}\right.$	X-arm + SRM	60

(*) When a baffle is placed in front of ITMY, Y-arm+SRM configuration comes very close to X-arm+SRM case.
$\left({ }^{* *}\right)$ http://ilog.ligo-wa.caltech.edu:7285/advligo/Test_Mass_Beam_Sizes, asymmetric case with 5.5 cm on ITM and 6.2 cm on ETM.

With the baffle size of Mike's choice $-214 \mathrm{~mm} \times 249 \mathrm{~mm}$ - the beam going through a baffle is cut off by 250ppm. If the baffle size of 1 cm larger in both direction ($224 \mathrm{~mm} \times 259 \mathrm{~mm}$), the cutoff is 55 ppm . The numbers in the above table were calculated without baffles.
G070659-00-E
LSC-Virgo meeting @ Hannover on October 25, 2007

LIGO SIS
 Quantifying the truth of imperfect world

Signal loss vs curvature error

