VSR1 summary

post VSR1 Commissioning plans

E. Tournefier (LAPP-CNRS)

LSC-Virgo meeting Oct 23rd, 2007

LIGO-G070725-00-Z

1

VSR1

- Duty cycle: locked 84%, science 81%
- Long locks: 20 locks longer than 40 hours + longest lock 94hours
- Main unlock reasons:
 - Technical: injection fast unlocks / Global control software crash
 - Earthquakes
- Main causes of long unlocks:
 - Maintenance + Commissioning
 - Global control software crash
 - Earthquakes / bad weather

- Main causes of horizon variations:
 - bad weather
 - 'Etalon effect' combined with control noise

Duty cycle / stability improvements

- Fast unlocks of the injection system (22% of unlocks):
 - Several tuning of the fast loop of the laser lock
 ⇒ completely disappeared since then
- Earthquakes:
 - Several unlocks per week due to earthquakes at the beginning of the run
 - Suspensions get very excited \Rightarrow takes a couple of hours to recover

Slow variations: Etalon effect vs sensitivity

Etalon effect:

 \Rightarrow

small FP cavity inside input mirrors (due to AR face)

 \Rightarrow effective reflectivity modulated with mirror thickness (i.e. temperature)

... and so the finesse of the cavities

 \Rightarrow managed to keep the Etalon effect small enough

during the last 2 weeks of the run

To be better characterized for Virgo+

Magnetic noise

Magnets of the input mirrors are mounted with the same polarity

- ⇒ Direct coupling of the magnetic noise to mirror displacement
- Actions during the run:
 - Identify sources of large magnetic noise close to the mirrors
 - Switch OFF identified noisy devices or
 - install them further away
 - \Rightarrow Many lines removed from 40 to 100 Hz
 - \Rightarrow To be continued for Virgo+

144 : Aug 29 2007 09:33:06 UTC dt:65.536s nAv:8 866420902.144 : Jun 21 2007 00:28:08 0.144 : Sep 5 2007 09:44:56 UTC dt:65.536s nAv:8 866420902.144 : Jun 26 2007 07:32:4

Beam jitter (I): piezo glitches

- Analysis of events found by online analysis
 ⇒ coincident with glitches on the input beam monitoring system
- Check electronics and mechanics of the piezo-actuators used for the input beam alignment (laser bench):
 found and replaced 1 malfunctioning piezo
- \Rightarrow The rate of triggers in the online analysis is highly reduced

Before

Beam jitter (II): mystery noise

 Noise structures (200-300 Hz + 600-1000 Hz) highly non-stationary: depend on the quality of the ITF alignment

Beam jitter (II): mystery noise

Suspended bench

Beam jitter (II): mystery noise death

Solution: low pass filter the signal of the piezo drivers
 ⇒ impressive decrease of frequency noise and beam jitter noise
 ⇒ (no more) mystery structures disappear from DF

Lesson: be careful with actuators on suspended benches

Sensitivity improvements summary

Noise budget now

Longitudinal control noises

- Just after VSR1: campaign of measurements of characterization of:
 - Actuators
 - Optical matrices
 - \Rightarrow Start to improve the controls % f(x)=0 should bring some noise reduction

Longitudinal control noises

- Thermal lensing side-effects:
 - Long lock acquisition (30mn)
 - Lock acquisition sensitive to power variations + other effects
 - Large offsets on error signals which need to be tuned
 - The error signals might be cleaner without thermal effects \Rightarrow control noise

\Rightarrow Cleaning of the input mirrors will be tried in November

- ⇒ Thermal compensation in preparation installation planned in Feb/March
- \Rightarrow see talk of A. Rocchi tomorrow

Duty cycle + Commissioning inefficiency

Angular controls

- Still some reduction of control noise needed
 - Install more quadrant photodiodes \Rightarrow look for better signals
 - Install less noisy electronics (Virgo+)
 - Improve the optical setup of the end benches (cleaner signals)
 - ⇒ Need improved telescope (reduction factor ~50) : under preparation for Jan/Feb

Noise budget now: what else?

Mirror actuator noise (<50 Hz) \Rightarrow New coil drivers (more filtering capabilities) in preparation will be tested soon Eddy currents in reference mass Not observed yet \Rightarrow The magnets will be capped if necessary ActuatorNoisePR ட் 40⁻¹⁹ 10-20 Actuators noise Environmental noise 10⁻²¹ Eddy currents _ -10-22 (upper limit) 10⁻²³

10

10²

sensitivity

ShotNoise PhaseNoise FrequencyNoise ShotNoiseB5 MICH

PRCL TotalNoise Design

10³

AngularNoise

ActuatorNoiseArm **ActuatorNoiseBS**

EddyCurrentsNoise ElectronicNoise

Environmental noise

- Most of the structures between 50 to 500 Hz are coherent with the motion of the detection Brewster window
- Tapping tests \Rightarrow Brewster is the most sensitive of all vacuum pieces
- Structures were well reduced during an ENEL power cut which switched OFF some noisy devices (Air conditioning,...): BNS range 4.3 -> 4.8 MHz

Summary of commissioning plans until Virgo+ shutdown

- ITF characterization (1-15 Oct): calibration, locking loops, suspension, noise \Rightarrow Start to optimize locking strategy \Rightarrow control noise reduction
- Attempt to use the second modulation frequency \Rightarrow reduction of control noise?
- Go on with improvements of the suspensions and alignment loops \Rightarrow reduce noise coupling
- Install the new coil driver (start with 1 tower in November) \Rightarrow actuator noise reduction
- Clean the input mirrors (November)
 - \Rightarrow Re-commission the lock acquisition + re-tune the locking loops
 - \Rightarrow Faster/more stable lock acquisition + cleaner error signals?
- Replace the Brewster window with a cryogenic trap (Jan/Feb)
 ⇒ environmental noise reduction
- Install new optics at end benches \Rightarrow better alignment performances (Jan/Feb)
- Install the Thermal compensation system and commission it (Feb/Mar)
 ⇒ Re-commission the lock acquisition + re-tune the locking loops
 ⇒ Faster/more stable lock acquisition + cleaner error signals?
- Cap the magnets when the Eddy currents noise is met