

Mirror Suspension Control VSR1 learning

E. Majorana INFN

MSC workgroup

LSC-Virgo joint meeting

Hannover 25-10-2007 LIGO-G070744-00-Z

outline

- I. MSC status at VSR1 startup: quick reminder.
- II. MSC tuning during VSR1.
- III. Noise issues.
- IV. Post-VSR1 considerations and perspective.

I. MSC status at VSR1 startup: quick reminder

Compensation of actuator non-linear recoil: for both Marionette and SuperAttenuator.

Global-Inverted-Pendulum-Control (partial): to increase Pos/Acc sensor crossover frequency (up to 70 mHz) without significant µSeism re-injection (0.15-0.7 Hz).

Pos/Acc prefiltering strategy tunable on-the-fly according to the wind (0.02-0.7) or sea (0.15-0.6) disturbance.

Lock force hierarchically controlled through 4 marionette (two FP arms): to avoid saturations at low frequency.

Local control roll-off (NI,WI,BSyaw) reduced to improve stability.

IMC Suspensions (MC,IB) non-optimized and with no V-damp.

II. MSC tuning during VSR1

- (((0)))
- NI-WI LVDT/ACC : anti-Wind => anti-Sea => anti-Wind (Jun 5)
 MARIO lock re-allocation on NI-WI OFF (NE,WE only) (Jun 6)
 BS LC tuning to improve regions with small phase margin (Jul 4)
 µSeism-Free Reconstruction of PR top stage Err Signal (Jul 6)
 EQG Guardian to disable GIPC in case of EarthQuake (Jul mid)
 NI-WI mirror re-centring on beam (Jul mid)
 GIPC and mSFR complete configuration (Sep 15)

Overall

Mirror Suspension Control Noise: no significant limitation of present Virgo sensitivity.

Open issues:

worse sensitivity during bad weather days (µseism and wind).

Initial Vs final: sensor prefiltering

hybrid filters (on-the-fly tuning)

VSR1: sensor prefiltering tuned, after few days, to reject wind diturbance injected by accelerometers.

mix =0.5 'medium' attenuation of LVDT μseism noise Compared to the starting config (crossover @ 50 mHz mix =0 (wind-earthqukes, f <70mHz): "aggressive" attenuation of accelerometer tilt noise. mix =1 (μseism, 150-600 mHz) :

"aggressive", slightly worsened against tilt noise.

INPUT TOWERS AS GROUND REFERENCE

MSC Vs robustness (1): earhquakes/H^{NSNS} drops/EQG patch

4-min to recover H instead of 30-40 min without EQG

EM-MSC-251007

(*MSC talk at LSC-Virgo May07, plenary):

MSC Vs rrobustness (2): earhquakes/stable GIPC

(*Indonesia M6.8, Sep-20-08.31):

Top-stage control strategies involving suspension operation **as-a-whole** improve disturbance rejection capability.

EQ GUARD used in monitor mode.

MSC Vs µseism (3) : main path/payload motion

The lock force applied to the marionette corrects the residual payload motion, whose rms above 100 mHz is \sim 1 order of magnitude smaller than the ground motion.

MSC Vs µseism (4) : rejection VSR1start-VSR1stop

MSC Vs µseism (5) : rejection VSR1start-VSR1stop

MSC Vs µseism (1): high µseism day during VSR1

Higher gain for injection bench angular control (pitch) necessary to **improve stability** during high sea activity.

Even though the μ seism disturbance is the the range of suspension resonant frequencies, the overall impact at the level of the mirror is relatively small:

a factor 10 of rms at the ground worsens by a factor 2 the accuracy of controlled signals at the ITF level.

What is the coupling path?

III. Noise issues

IV. Post-VSR1 considerations and perspective.

OBO: attempts for systematics

One-By-One injection to mimic µseism disturbance occurred during VSR1

OBO multiple Probes

4 entry-points: END, INPUT, BS, PR, ISYS 3 d.o.f: longitudinal (z), transversal (x), vertical (y)

OBO: injection at NE-WE top-stage, a "positive" clear result.

An efficient way to produce Horizon drops similar to actual one as μ seism rms is ~ 3 μ m is through mirror pitch noise (consistent with VSR1 experience).

significant effect 200-300 Hz

Injection @ NE-WE

As expected, due to GIPC, injections @ NI-WI produce very similar effects.

OBO: injection at IMC top-stages

Very difficult to excite the IB simply injecting pseudo µSeismic noise at the top-stage.

Power fluctuations close to the actual ones only by using a strong line, tuned on IB main pitch mode.

Sub-conlcusion IV and summary

In spite of suspension resonances, normally there is no environmental μ seismic effect on the sensitivity.

High μ seism means that the ground shake in the range 0.2-0.7 Hz can increase **up to 10 times**, worsening mirror control signals by a factor **2**.

Two main effects

ITF Power fluctuations

Improvement

of IB angular control (coming soon) Specific coupling with sensitivity due to diff.pitch

In order to cope with a noise bump at 200-300 Hz (that should be removed) we can:

- **decrease** the gain demand to alignment control (by setting input mirrors under AA)
- **improve** the strategy (higher LVDT/Acc crossover and tuned reallocation techniques).

Quite reasonably achievable to gain a factor 2

Not used

STANDARD CONFIGURATION FOR LONG SUSPENSIONS

Basic requirements: sensing and actuation diagonalization + hiearchical control

Virgo "standard-super-attenuator" suspension ...

μ seism Vs VSR1 sensitivity: quicklook to the data/ μ seism > 1.5 μ m_{rms}

100-500 Hz: power fluctuations due to injection misalignment driven + specific bump coupled to ITF pitch misalignments

Other features:

10-100 Hz: glitches uncorrelated to power fluctuations

500-10000 Hz: small noise floor fluctuations well correlated to power fluctuations

MSC Vs µseism (2): main path/ground excitation

(((@)))

LVDT sensor measures the position of top-stage suspension point (top of the IP) with respect to a grounded rigid mechanical frame.

Top-stage LVDT channels provide the best measurement of ground noise

Impact on the ITF longitudinal error signals

MSC Vs µseism (7) : residual impact

Impact on the ITF angular error signals, in loop full bandwidth

MSC Vs µseism (8) : residual impact

Impact on the ITF angular error signals, DC controlled

MSC Vs µseism (9) : residual impact

Impact on the IMC angular error signals, in loop

Injection (a) BS

Not enough to explain the noise in actual condition, considering that the applied disturbance was much larger in OBO tests.

Noise injection at BS suspension top-stage

With a similar excitation of the top stage, the longitudinal accuracy is much worse.

The angular motion is larger in tx, smaller in ty.

Noise budget now + what next? (E. Tournefier)

- Control noises: further reduction
- sensing/driving matrices improvements / 8 MHz?
- angular control filters/ better signals with new end benches telescope
- Actuator noise is not far at low frequency => new coil driver (more filtering) Where is the Eddy current noise?
- Remaining mystery noise => Brewster removal + diffused light mitigation

sensitivity AngularNoise

ActuatorNoiseArm

ActuatorNoiseBS ActuatorNoisePR