

Homodyne readout of an interferometer with Signal Recycling

Stefan Hild for the GEO600 team IGR Leibniz Universität Hannover Leibniz October 2007 LSC-Virgo meeting Hannover

LIGO-G070746-00-Z

Motivation for DC-readout (1)

Disadvantages

- Increased coupling of laser power noise.
- Usually an output mode cleaner (OMC) is required.
- Very sensitive to imbalances of the interferometer arms.

Motivation for DC-readout (2)

Advantages

- Reduced shot noise (no contributing terms from 2 times the heterodyne frequency)
- Reduction of oscillator phase noise and oscillator amplitude noise
- Stronger low pass filtering of local oscillator (due to PR cavity pole)

Simplify the GW detector

- Simpler calibration (GW-signal in a single data-stream, even for detuned SR)
- Simpler circuits for photodiodes and readout electronics
- Possibility to use photodiodes with larger area => reduced coupling of pointing
- Reduced number of beating light fields at the output photodiode => simpler couplings of technical noise
- Requires less effort for injecting squeezed light (=> useful precursor for GEO-HF)
- LO and GW pass the same optical system (identical delay, filtering, spatial profile) => This advantage is especially important for detectors with arm cavities.

DC-readout without OMC

Disadvantage: Still some shot noise contribution from RF-sidebands.

Offset to dark fringe

Simulated shot noise: Homodyne vs Heterodyne detection

UNIVERSITY OF BIRMINGHAM Simulated shot noise: Ho

Simulated shot noise: Homodyne vs Heterodyne detection

DC-readout with detuned SR: - better peak sensitvity

- shape is rotated => better at low freqs, worse at high freqs.

UNIVERSITY

BIRMINGHAM Simulated shot noise: Homodyne vs

DC-readout with detuned SR: - better peak sensitivity

- shape is rotated => better at low freqs, worse at high freqs.

Simulated shot noise: Homodyne vs Heterodyne detection

1st Question: Can we confirm the rotation of the shape in our measurements?

,Rotation' of the optical gain

Rotated shape of optical response confirmed by measurement:

Rotated shape of optical response can be understood by looking at the phases of the contributing light fields. => change of the optical demodulation phase.

	С	GW+	GW-	MI+	MI-
f<< 550 Hz	0	0	0	0	180
f>>550 Hz	0	0	180	0	180

Simulated shot noise: Homodyne vs Heterodyne detection

2nd Question: Can we confirm the change of the relative shape of tuned and detuned SR with DC-readout ?

Simulated shot noise: Homodyne vs Heterodyne detection

2nd Question: Can we confirm the change of the relative shape of tuned and detuned SR with DC-readout ?

Comparison of measured and simulated optical transfer function for DC-readout

The simulated optical transfer function for tuned and detuned SR wit DCreadout is reproduced by our measurements.

Best sensitivity so far with DC-readout and a SR detuning of 550 Hz

Noise budget for DC-readout (detuned SR)

<u>Laser power</u> noise (LPN):

is partly limiting at low frequencies

overall seems to be less of a problem than initially expected

3rd Question: Do we understand the laser power noise coupling?

Understanding the LPN in DC-readout

Good agreement between measurement and simulation !!

Summary

- Demonstrated DC-readout with tuned and detuned Signal-Recycling (without OMC)
- Going to DC-readout changes the optical demodulation phase (rotated shape of optical response)
- Measurements and simulations agree pretty well:
 - > Optical response
 - Laser intensity noise coupling
- Achieved a displacement sensitivity of 2e-19m/sqrt(Hz) (currently worse sensitivity than in heterodyne readout)
- Laser power noise is not as bad as rumors suggest (due to filtering of PR cavity pole)

Where to go in future ?? DC-readout with tuned Signal recycling

- Best shot noise at low and high frequencies.
- This combination of SR tuning and DC-readout would allow an ,easy' implementation of squeezed light (no filter cavity necessary to get full benefit)

See talk by S.Chelkowski @ QND-meeting

Additional slides

UNIVERSITYOF BIRMINGHAM

Output mode for positive and negative dfo: observation vs simulation

1400

1200

1000

400

200

positive dfo

negative dfo

Stefan Hild

LSC-Virgo Meeting 10/2007

Output mode for positive and negative dark fringe offset (dfo)

Wave front radii of returning beams @ beam splitter:

horizontal: north > east vertical: north < east

Realisation of tuned signal recycling

• For tunings < 250 Hz we cannot achieve a reasonable control signal.

- Developed a new technique: We 'kick' MSR in a controlled way to jump to tuned SR, where a reasonable control signal can be obtained again.
- MSR is caught at the tuned operating point again.

2 different possibilities for going to tuned signal recycling

1. Keep the modulation frequency and jump to center zerocrossing.

Change the modulation frequency (corresponding to 0 Hz tuning)
=> only a single zerocrossing exists.

Laser intensity noise coupling for tuned and detuned SR

Tuned DC with various dark fringe offsets

Comparison of heterodyne 550 Hz, tuned heterodyne and tuned DC

While in the two heterodyne cases the sensitivity is close to simulated shot noise at 2 kHz, this is not the case for tuned DC.

Combination of tuned SR and squeezing– an option for GEO HF?

Squeezed light is available for injection

"Coherent Control of Vacuum Squeezing in the Gravitational-Wave Detection Band", Vahlbruch et al, PRL 97, 011101 (2006)

• Tuned Signal-Recycling operation was demonstrated

"Demonstration and comparison of tuned and detuned Signal-Recycling in a large scale gravitational wave detector", S Hild et al, CQG. 24 No 6, 1513-1523.

\Rightarrow No need for long filter cavity !

