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What is MQM experiment? Why do we need verification?

GOAL of MQM experiment

Prepare, manipulate and observe quantum state of macroscopic test masses, thereby
testing quantum mechanics in macroscopic world, using interferometric gravitational
wave detectors
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To check by an INDEPENDENT EXPERIMENT whether the state preparation using
conditioning or control was successfull and QUANTITATIVELY VERIFY how successfull
it was

What the success of verification depends on, and why do we believe in it?

On classical noise budget being below the SQL in the frequency band of interest;

Use of QND measurement techniques will allow to probe quantum state with
sub-SQL precision!
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Simple conceptual scheme of the MQM experiment

Linear Gaussian system coupled with light =⇒ Heisenberg equations:

Heisenberg equations for our system

m
¨̂
X + 2γp

˙̂
X + ω2

pX̂ = αÂ1 + F th ,

B̂1 = Â1 ,

B̂2 = Â2 +
α

~
(X̂ + Xth) .

α =
p

~mΩq: measurement strength,
Ωq ∼ 1/τq : measurement timescale.

How big is the probability to observe the quantum behavior of the test mass?

The answer depends on how strong is it coupled to the environment, i.e. how big are
thermal and quantum noises.
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“White” noise

1.00.5 2.00.2 5.00.1 10.0

1.0

0.5

2.0

0.2

5.0

10.0

f � fSQL

"
####
####
####
####
##

S h
�S

SQ
L

quantum noise

SQL

Ωq/ΩSQL = 1

Quantum noise

Shot and radiation pressure noises
=⇒ white:

Sq
x =

~

mΩ2
q

= const

Sq
F = ~mΩ2

q = const

Sq
GW(Ω) = Sq

x +
Sq

F

m2Ω4

=
~

mΩ2

»

Ω2

Ω2
q

+
Ω2

q

Ω2

–

Y. Chen et al (AEI Golm) Verification of conditional quantum state in GW detectors LSC-VIRGO 2007 5 / 12



“White” noise

1.00.5 2.00.2 5.00.1 10.0

1.0

0.5

2.0

0.2

5.0

10.0

f � fSQL

"
####
####
####
####
##

S h
�S

SQ
L

SQL

force noise

displacement noise

ΩF /Ωq Ωx/Ωq

Classical noise

Classical suspension and mirror
internal =⇒ white:

Sth
x =

2~

mΩ2
x

= const ,

Sth
F = 2~mΩ2

F = const ,

Sth
GW(Ω) = Sth

x +
Sforce

F

m2Ω4
.

Y. Chen et al (AEI Golm) Verification of conditional quantum state in GW detectors LSC-VIRGO 2007 5 / 12



“White” noise
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Spectral density of the total noise
will be then:

Stot
GW(Ω) = Sq
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GW(Ω) =

= Sq
x(1 + 2ζ2
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F (1 + 2ζ2
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where
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ΩF

Ωq
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What do we mean by saying “quantum” and “classical” state?

Gaussian states ⇐⇒ covariance matrix

V(t) =

»

〈δx̂2〉 〈δx̂δp̂〉sym

〈δp̂δx̂〉sym 〈δp̂2〉

–

If the test mass is in

Pure quantum state =⇒ det V = ~
2/4

Classical mixed state =⇒ det V ≫ ~
2/4
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Scheme of state preparation

How long does quantum state survive?

State survival timescales ⇐⇒ noise budget.
Survival time =⇒ τF ∼ 1/ΩF

Preparation time:

τP < τF

Y. Chen et al (AEI Golm) Verification of conditional quantum state in GW detectors LSC-VIRGO 2007 7 / 12



Scheme of state preparation

How long does quantum state survive?

State survival timescales ⇐⇒ noise budget.
Survival time =⇒ τF ∼ 1/ΩF

Evolution time:

τE < τF
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Timescales of verification and survival of test mass state

Covariance matrix of the test mass during verification has two parts

V
tot = V

cond + V
add

V
cond corresponds to the test mass conditional state after preparation,

V
add reflects additional uncertainties due to verification process.
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Variance of test mass displacement at measurement time τ :

δx2 = V cond
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F
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x + Sth
x = Sq

x(1 + 2ζ2
x) Stot
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Minimal displacement variance takes place at τ = τq :

δx2 = V cond
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Timescales of verification and survival of test mass state

Covariance matrix of the test mass during verification has two parts

V
tot = V

cond + V
add

V
cond corresponds to the test mass conditional state after preparation,

V
add reflects additional uncertainties due to verification process.

Order of magnitude estimate of entries of V
cond
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Timescales of verification and survival of test mass state

Covariance matrix of the test mass during verification has two parts

V
tot = V

cond + V
add

V
cond corresponds to the test mass conditional state after preparation,

V
add reflects additional uncertainties due to verification process.
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QND methods in verification
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QND methods in verification

Order of magnitude estimate of V
add
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Verification with realistic noise budget

Verification with non-“white” noise

Realistic noises =⇒ still sub-Heisenberg precision
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Conclusion

1 GW detectors can be used to study quantum mechanics of truly macroscopic test
masses, by using a two-staged process of preparation and verification;

2 Quantum state can be verified with sub-Heisenberg precision using plausible
experimental technology;

3 Elaborated procedure can be also applied in small scale devices, with even more
ease;
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