Three different regimes in the verification stage according to the spring frequency

K.Somiya, Y.Chen, S.Danilishin, H.Miao, H.Müller-Ebhardt, and H.Rehbein

\underline{MQM}

Sub-SQL interferometer in a near future

 We'll see the quantum behavior of a test mass (MQM=Macroscopic Quantum Measurement)

Quantum behavior of a test mass

- Quantum breathing
- Thermal decoherence
- How can we see this?

First we need to prepare a quantum state

We should identify the center of the wave function.

How to filter out the classical deviation

Wiener Filter

designed from Sdisp & Stot
different filters for X & P

How to filter out the classical deviation

Wiener Filter• designed from Sdisp & Stot• different filters for X & P

The more the SQL is beyond classical noise, the closer the prepared state is to a pure quantum state.

Prepared quantum state

Squeeze factor depends on the spring frequency ω

Now we should do measurement (verification)

Then, the next step is...

- (i) verify if it is almost a quantum state
- (ii) wait for one cycle $(2\pi/\omega)$ and see how different from (i)

I'll show 3 different regimes depending on the spring frequency

Three situations in a simple model

What do these frequencies mean?

10

(1) fp < fsus < fqn [pendulum] (1Hz, 35Hz, 160Hz)

Highly squeezed (fp<<fqn)

(1) fp < fsus < fqn [pendulum] (1Hz, 35Hz, 160Hz)

Highly squeezed (fp<<fqn)

(1) fp < fsus < fqn [pendulum] (1Hz, 35Hz, 160Hz)

Evolution in time **Quantum fluctuation** $\Lambda P/m_{\odot}$ **Thermal noise** 15 15 15 10 10 10 5 5 $\Delta \mathbf{X}$ -2 2 -2 -1 1 _1 $1 = \frac{x_{SQL}}{1}$ -10 ħ **1**5 -15 t=0.001 sec t=0.005 sec t=0.015 sec Thermal noise becomes bigger very soon. But the information of P and X can be obtained quickly due to the strong squeezing (hope).

(1Hz, 35Hz, 160Hz)

Note that these are snap shots.

We shall measure it (Δx) for some amount of time. (integrate)

(1Hz, 35Hz, 160Hz)

Let's see the integral of <X(t)X(t')> over time T.

- At a peak of each, Vxx/Vtot=34% and Vpp/Vtot=70%
- Optimal filter will make these number better

Optimal filters

We can use the filter for each quadrature between X and P.

If a quantum state is prepared correct, we'll be able to verify it in this way.

(2) fsus < fp < fqn [spring]

(35Hz, 100Hz, 160Hz)

Modest squeezing (fp~fqn) Thermal noise grows slowly (fsus<fp)

Let's see the integrated variances.

Reasonably fine.

Thermal decoherence is bigger than the 1st cycle.

We'd like to see the results with the optimal filter.However it is not available yet... I'll do soon.

(3) fsus < fqn < fp [spring]

(35Hz, 160Hz, 300Hz)

This is a subtle situation...

Let's see the calculated result.

(3) fsus < fqn < fp [spring]

(35Hz, 160Hz, 300Hz)

Conclusion

- The pendulum case seems hopeful:
 fp<<fq → high squeezing
 fp<fsus → thermal decoherence grows fast
- The middle-freq spring case seems interesting:
 fp~fq → not so high squeezing
 fsus<fp → measurement can be done several times
- The high-freq spring case was *different* from what I thought:
 fq<<fp ---> almost no squeezing (no anti-squeezing)

Some more calculation should be done. Note that this is with a very simple model.