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Sub-SQL interferometer in a near future

We’ll see the quantum behavior of a test mass
(MQM=Macroscopic Quantum Measurement)
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Quantum behavior of a test mass

• Quantum breathing
• Thermal decoherence
• How can we see this?

Δx

Change the 
potential well squeezing                        anti-squeezing                         squeezing 

thermal decoherence 
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First we need to prepare a quantum state

0
x

t

Quantum distribution

Deviation by thermal noise

Quantum information is lost

We should identify the center of the wave function.

(after we realize a sub-SQL detector)
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How to filter out the classical deviation

Wiener Filter
• designed from Sdisp & Stot

• different filters for X & P

Stot

Sdisp+Ssens
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How to filter out the classical deviation

Wiener Filter
• designed from Sdisp & Stot

• different filters for X & P

Stot

Sdisp+Ssens

Investigation

The more the SQL is beyond classical noise,
the closer the prepared state is to a pure quantum state. 
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Prepared quantum state

Pure state
(~Heisenberg’s principle)

Prepared state

Difference (error) is 
due to classical noise.

Vxx

Vpp /mω

X

P/mω

variances 

Now we should do measurement (verification) 

Squeeze factor depends on the spring frequency ω
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Then, the next step is…

(i) verify if it is almost a quantum state

(ii) wait for one cycle (2π/ω) and see how different from (i)

I’ll show 3 different regimes 
depending on the spring frequency
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Three situations in a simple model

1 10 100 1000 10000
1.μ10-22

1.μ10-20

1.μ10-18

1.μ10-16

1.μ10-14
There are 4 important frequencies 

Cavity pole is much higher

fp fsus fqn <<    fcoa

QN
sus. th

coa. th
SQL 

(1) fp < fsus < fqn
(2) fsus < fp < fqn
(3) fsus < fqn < fp

Quantum measurement 
region
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What do these frequencies mean?

Δx

Change the 
potential well squeezing                        anti-squeezing                         squeezing 

thermal decoherence 

fsusfqn fp

These determine the width  
of the potential wells.

This determines the timescale
of thermal decoherence.
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(1) fp < fsus < fqn [pendulum]
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(1Hz, 35Hz, 160Hz)

ΔP/mω

ΔX (to be measured)

ωm
xSQL

22
1 h

=≡

Quantum fluctuation (ellipse!)
Thermal noiseSnap shot at t=0.005sec

Highly squeezed (fp<<fqn)
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(1) fp < fsus < fqn [pendulum]
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Highly squeezed (fp<<fqn)
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(1) fp < fsus < fqn [pendulum]
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Quantum fluctuation
Thermal noiseΔP/mω

ΔX

Evolution in time

t=0.001 sec t=0.015 sec t=0.005 sec 

(1Hz, 35Hz, 160Hz)

Thermal noise becomes bigger very soon. 

But the information of P and X can be obtained 
quickly due to the strong squeezing (hope).

ωm
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1 h

=≡
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(1) fp < fsus < fqn [pendulum]
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Evolution in time

t=0.001 sec t=0.015 sec t=0.005 sec 

(1Hz, 35Hz, 160Hz)

Note that these are snap shots.

We shall measure it (Δx) for some amount of time.  
(integrate)

ωm
xSQL

22
1 h

=≡
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(1) fp < fsus < fqn [pendulum]

0.005 0.01 0.015 0.02

0.2

0.4

0.6

0.8

1

(1Hz, 35Hz, 160Hz)

Let’s see the integral of <X(t)X(t’)> over time T.
Each component 
normalized by 
the integrated 
total variance

T(sec)

Vxx
Vpp

Shot noise

Vxp (~ angle of the ellipse)

Thermal noise

φsus=2e-6
P0=1W
BAE (no RPN)

notes

• At a peak of each, Vxx/Vtot=34% and Vpp/Vtot=70% 
• Optimal filter will make these number better



16

(1) fp < fsus < fqn [pendulum]
Optimal filters

0.005 0.01 0.015 0.02

200

400

600

800

0
T (sec)

0.005 0.01 0.015 0.02

-30000
-25000
-20000
-15000
-10000
-5000

0

T (sec)

for Vpp

Vxx etc.=0
TN+shot=min

for Vxx

Vpp etc.=0
TN+shot=min

optimal function 48% 76%
(simple window) 34% 70%

We can use the filter for each quadrature between X and P.
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(1) fp < fsus < fqn [pendulum]

-1 -0.5 0.5 1

-20

-10

10

20 to be measured (verification)
prepared state (prediction) 

X

P/mω

iterative measurement

distribution

If a quantum state is prepared correct,
we’ll be able to verify it in this way.
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(2) fsus < fp < fqn [spring]
(35Hz, 100Hz, 160Hz)
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T=100us T=10ms T=2.5ms Quantum 

fluctuation

Thermal 
noise

Modest squeezing (fp~fqn)
Thermal noise grows slowly (fsus<fp)

Let’s see the integrated variances.
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(2) fsus < fp < fqn [spring]
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1st cycle 

measurement starts at
(35Hz, 100Hz, 160Hz)

Reasonably fine.
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(2) fsus < fp < fqn [spring]
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2nd cycle 

measurement starts at
(35Hz, 100Hz, 160Hz)

Thermal decoherence is bigger than the 1st cycle.
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(2) fsus < fp < fqn [spring]
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3rd cycle 

measurement starts at

We’d like to see the results with the optimal filter.
However it is not available yet… I’ll do soon.

(35Hz, 100Hz, 160Hz)
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(3) fsus < fqn < fp [spring]
(35Hz, 160Hz, 300Hz)

This is a subtle situation…

Change the 
potential well
(160Hz to 300Hz) 

anti-squeezing ??

? ?
?

squeezing ???

Let’s see the calculated result.
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(3) fsus < fqn < fp [spring]
(35Hz, 160Hz, 300Hz)
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ΔP/mω

ΔX

Snap shot

cf. fp=5kHz
T(msec)

Vxx

Vpp

Shot noise is much higherIntegral (prop.)

Vxp is quite small
(as it’s not squeezed) 

Thermal noise

0

So, this situation is not interesting…
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Conclusion

• The pendulum case seems hopeful:
fp<<fq high squeezing
fp<fsus thermal decoherence grows fast

• The middle-freq spring case seems interesting:
fp~fq not so high squeezing
fsus<fp measurement can be done several times

• The high-freq spring case was different from what I thought:
fq<<fp almost no squeezing (no anti-squeezing)

Some more calculation should be done.
Note that this is with a very simple model.
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