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Time−frequency image of noise + inspiral signal
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1. Background

A generic ‘chirp’ can be closely approximated by a 
connected set of multiscale chirplets with 
quadratically-evolving phase. The problem of finding 
the best approximation to a given signal using 
chirplets can be reduced to that of finding a path of 
minimum cost in a weighted, directed graph, and can 
be solved in polynomial time via dynamic 
programming.  For a signal embedded in noise we 
apply constraints on the path length to obtain a near-
optimal statistic for detection of chirping signals in 
coloured noise1. In this poster we present some results 
from using this method to detect binary black hole 
coalescences in simulated LIGO noise.

1Candès, Charlton and Helgason, “Detecting highly oscillatory signals by chirplet path 
pursuit”, Appl. Comput. Harmon. Anal. 24 (2008)

2. Detection problem

We want to test for the presence of a chirp-like but 
otherwise unknown signal of the form

3. Chirplets

This suggests we should examine functions which 
will correlate well locally with h(t). We define a 
family of multiscale chirplets of the form

where Σ is the covariance of n(t). Chirplets have 
linearly-evolving instantaneous frequency a + bt and 
form line segments in the TF plane.
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Such a signal has a well-defined instantaneous 
frequency and is well-localised along the curve 
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where n(t) is coloured noise, we seek a statistic which 
will discriminate between the hypotheses

defined on dyadic subintervals I = [k2-s, (k+1)2-s] 
where s = 0, 1, 2, ... represents a scale index. Each 
chirplet is normalised according to the inner product
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4. Test statistic

Our test statistic is calculated by looking for a 
connected  ‘path’ of chirplets in the TF plane that gives 
a good match to the signal. However, simply 
maximising the sum Σp∈P |〈u, cp〉|2 over all chirplet 
paths P will naively overfit the data. In the limit of 
small chirplets, such a statistic would simply fit u itself 
rather than a hidden signal. Instead, we use a 
multivariate statistic given by

5. Example of a chirplet path

The figure below shows the time-frequency image of 
a binary black hole system with m1 = m2 = 8 solar 
masses. The best chirplet path constrained to ℓ = 5 is 
overlaid, with some representative nodes and arcs of 
the chirplet graph. 

6. Multiple comparison

Since Tℓ* is multivariate we have a complex decision 
rule for rejecting H0. One approach is to use the 
Bonferroni approximation: to achieve an overall type 
I error α we test each Tℓ* at significance α/k where k is 
the number of path lengths used. However, this is 
known to be conservative. We use the following more 
powerful multiple comparison:

1. Calculate the p-value for each Tℓ* and find the 
minimum p-value p*.
2. Compare p* with the distribution of minimum p-
values under H0.
3. If p* is small enough to lie in the α-quantile of the 
distribution, reject H0 – we conclude a signal is 
present.

In step 1, we choose the coordinate of Tℓ* that gives 
the greatest evidence against H0. In step 2, we 
compare p* to what we would expect under H0.

Inspiral and ringdown components use standard models 
from the literature. The “merger” component is simply a 
chirp signal where amplitude A(t) and instantaneous 
frequency φ′(t)/2π have been smoothly connected across 
the gap using cubic polynomials2.

2We thank Warren Anderson for providing us his Maple code to generate BBH coalescences

We also show the curve corresponding to the SNR 
that gives a similar detection rate via matched 
filtering as if the the signal were known exactly –
typically this is about half the SNR required by the 
chirplet path method. In other words: (ringdown)
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7. Simulated BBH coalescence

We test our method using simulations of binary black 
hole coalescences with total mass in the range 20–45 
solar masses. These signals are good candidates for 
chirplet analysis because they are

chirp-like but otherwise poorly modeled
short: 0.5–2 s

The test signals have three components:
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where ℓ is a constraint on the path length |P|. In other 
words, for each possible path length ℓ we find the path 
of that length which gives the largest total correlation. 
Although there are a vast number of paths, if we 
discretise the TF plane and consider points (tk, fl) as 
nodes in a graph with arcs between them having weight 
|〈u, c〉|2, calculating Tℓ* reduces to a constrained
dynamic programming problem which can be solved in 
polynomial time, approximately O(#ℓ × #arcs). 

The figure above shows an example of simulated h(t) 
for the coalescence of a m1 = m2 = 15 BBH system at 
1 MPc. The lower plot is the instantaneous frequency.

8. Results

For the signal above, the figures opposite show the 
detection rate in simulated LIGO noise for (1) fixed 
false alarm rates α as a function of SNR (top left) and 
(2) fixed SNRs as a function of α (top right). A signal 
at SNR 10 (~80 MPc) has about an 85% chance of 
being detected.
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SNR=12 (MF SNR=6.0)
SNR=10 (MF SNR=4.3)
SNR=  8 (MF SNR=2.9)
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α = 0.05
α = 0.01
α = 0.001

The chirplet path method can see a signal 
about half the distance that a matched 

filter would see if the signal was known.

This is the cost of a non-parametric detection method 
that is not targeted at a specific signal – however, the 
method can detect a much larger set of signals than a 
bank of matched filters.


