${ }^{1}$ Division of Applied and Computational Mathematics, Caltech
${ }^{2}$ School of Computing and Mathematics, Charles Sturt University

1. Background

A generic 'chirp' can be closely approximated by a connected set of multiscale chirplets with quadratically-evolving phase. The problem of finding the best approximation to a given signal using chirplets can be reduced to that of finding a path of minimum cost in a weighted, directed graph, and can be solved in polynomial time via dynamic programming. For a signal embedded in noise we apply constraints on the path length to obtain a nearoptimal statistic for detection of chirping signals in coloured noise ${ }^{1}$. In this poster we present some results from using this method to detect binary black hole coalescences in simulated LIGO noise.
'Candès, Charlton and Helgason, "Detecting highly oscillatory signals by chirplet path pursuit", Appl. Comput. Harmon. Anal. 24 (2008)

2. Detection problem

We want to test for the presence of a chirp-like but otherwise unknown signal of the form

$$
h(t)=A(t) \cos \varphi(t)
$$

under some mild conditions:

$$
\begin{aligned}
& \text { - } A(t) \text { slowly varying } \\
& \text { - }|\dot{\varphi}(t)|<\pi \text { and }|\dot{\varphi}(t)|^{2} \gg|\ddot{\varphi}(t)|
\end{aligned}
$$

Such a signal has a well-defined instantaneous frequency and is well-localised along the curve

$$
f(t)=\dot{\varphi}(t) / 2 \pi
$$

in the time-frequency plane. Given detector output

$$
u(t)=n(t)+\rho h(t)
$$

where $n(t)$ is coloured noise, we seek a statistic which will discriminate between the hypotheses
$\mathrm{H}_{0}: \rho=0$
$\mathrm{H}_{1}: \rho \neq 0$
5. Example of a chirplet path

The figure below shows the time-frequency image of a binary black hole system with $m_{1}=m_{2}=8$ solar masses. The best chirplet path constrained to $\ell=5$ is overlaid, with some representative nodes and arcs of the chirplet graph.

The figure above shows an example of simulated $h(t)$ for the coalescence of a $m_{1}=m_{2}=15 \mathrm{BBH}$ system at 1 MPc . The lower plot is the instantaneous frequency.

8. Results

For the signal above, the figures opposite show the detection rate in simulated LIGO noise for (1) fixed false alarm rates α as a function of SNR (top left) and (2) fixed SNRs as a function of α (top right). A signal at SNR $10(\sim 80 \mathrm{MPc})$ has about an 85% chance of being detected.

Inspiral and ringdown components use standard models from the literature. The "merger" component is simply a chirp signal where amplitude $A(t)$ and instantaneous frequency $\varphi^{\prime}(t) / 2 \pi$ have been smoothly connected across the gap using cubic polynomials ${ }^{2}$.

We test our method using simulations of binary black hole coalescences with total mass in the range 20-45 solar masses. These signals are good candidates for chirplet analysis because they are
$>$ chirp-like but otherwise poorly modeled
$>$ short: $0.5-2 \mathrm{~s}$
The test signals have three components:

$$
h(t)=\left\{\begin{array}{lll}
h^{\text {insp }}(t) & t \leq 0 & \text { (inspiral) } \\
h^{\text {merge }}(t) & 0<t \leq t_{\text {merger }} & \text { (merger) } \\
h^{\text {ring }}(t) & t>t_{\text {merger }} & \text { (ringdown) }
\end{array}\right.
$$

—

