

Visualising gravitational-wave event candidates with the

LIGO

Coherent Event Display

R.A. Mercer & S. Klimenko University of Florida

GWDAW-12: 13-16 December 2007

LIGO-G070829-00-Z

Abstract

A worldwide network of gravitational-wave detectors is now operating with unprecedented sensitivity. It is, therefore, becoming increasingly important to visualise event candidates from search pipelines using these detector networks. The Coherent Event Display has been developed with the goal of providing a simple and easy to use tool for performing follow up analyses of burst gravitational-wave event candidates. In this poster we present how the Coherent Event Display can be used for reconstructing gravitational-wave events, and present examples from the analysis of simulated signals using multiple detector networks.

- World-wide network of gravitational-wave detectors now online: LIGO (H1, H2 & L1), GEO, VIRGO
- Visualise event candidates from search pipelines running on data from these detector networks
- Targeted at transient gravitational-wave events, such as Supernovae, GRBs, BH Mergers, etc...
- Follow up tool for coherent analysis
- Produces a web page containing reconstructed event parameters, timefrequency maps, likelihood time-frequency maps, reconstructed detector responses, and skymaps of various coherent statistics
- Use the Coherent WaveBurst [1, 5] Algorithms

Example: Hybrid Numerical Relativity Binary Black Hole Merger Injection

See [2, 3, 4] for further details on these Hybrid NR Waveforms

Example: Hybrid NR Injection

Coherent V	VaveBurst Event	Summ	ary Pag	Ð
Job Parameter Table	Job Parameter Table			
Event Parameter Table	(GPS Segment Time (s)	870043214		
Network Data Matrix	UTC Segment Time Aug 01 200	07 22:40:00 UTC		
Time-Frequency Maps			_	
Likelihood Time-Frequency				
Map Reconstructed Detector	Event Parameter Table			
Responses	IFO	1	H	H2
Skymaps	Time Lag (s)	0.000	0.000	0.000
Event Parameters (XML	GPS Start Time (s)	870043313.906	870043313.906	870043313.906
<u>Castion Eila</u>	GPS Stop Time (s)	870043314.016	870043314.016	870043314.016
	GPS Central Time (s)	870043313.987	870043313.980	870043313.980
Parameter File	Central Time (s)	99.987	99.980	99.980
FOCULIE/I/RMINI	Event Duration (s)			0.109375
	hrss	3.81e-22	2.57e-22	2.57e-22
	Null	7.77e+00	9.41e+00	1.32e+01
	Noise	2.97e-23	2.36e-23	6.45e-23
NR Hvhrid	SNR	1.81e+02	1.34e+02	3.61e+01
	Rank SNR	1.02e+02	7.98e+01	2.72e+01
waveform scaled	Rank Significance	4.67e+01	3.56e+01	9.52e+00
to a distance of	Gaussian Significance	7.75e+01	5.47e+01	9.51e+00
	Geometric Significance			3.22e+00
odivi cz	Likelihood			3.21e+02
	Phi (degrees)			154.50
	Theta (degrees)			109.50
	Size			10
	flow (Hz)			64.00
	fhigh (Hz)			256.00
	Central Frequency (Hz)			125.12

192.00

128

-1.18e-01 4.05e-01

-1.18e-01

5.32e-01 -3.02e-01

4.05e-01

7.91e-01

Pearson's Correlation Coefficient Network Correlation Coefficient

Normalisation Factor

Bandwidth (Hz) Resolution (Hz)

тx

8.51e-01

1.00e+00

1.73e+02 1.50e+02 3.02e+00

-6.90e+00

3.88e+00

Effective Correlated Energy

Correlated Energy

Energy Disbalance

8

Time-Frequency Maps

The Coherent WaveBurst algorithms use wavelet transformations to produce data in the time-frequency domain. These are referred to as time-frequency maps and they show the wavelet coefficients normalised by the noise RMS as a function of time and frequency. They are then combined in order to produce a coherent statistic, the likelihood, which is then used for event selection.

70

H2

분 2000

Дрс

25

NR Hybrid Waveform at

Likelihood

• Likelihood for Gaussian noise is given by

$$\mathcal{L} = \sum_{i=1}^{N} \sum_{k=1}^{K} \frac{1}{2\sigma_k^2} \left[x_k^2[i] - (x_k[i] - \xi_k[i])^2 \right]$$

• Detector response

$$\xi_k[i] = F_{+k}h_+[i] + F_{\times k}h_\times[i]$$

• The likelihood is also a measure of the detected energy

Likelihood Time-Frequency Map

Reconstructed Detector Responses

The Coherent WaveBurst algorithms can produce reconstructed detector responses and gravitational-wave waveforms from the likelihood functional. These reconstructed waveforms and detector responses can then, potentially, be to source models for extraction of source parameters, if such models are available.

SkyMaps

NR Hybrid Waveform at 2 Mpc

Likelihood

Correlation Statistic

NR Hybrid Waveform at 25 Mpc

Sky Statistic

Correlation Statistic

• The detected energy is the sum incoherent and coherent energy incoherent coherent $2\mathcal{L} = \sum C_{mn} \langle x_m x_n \rangle = E_{m=n} + E_{m \neq n}$

• The incoherent and coherent energies are then used to form the network correlation, which is used for post-production selection of triggers

$$C_{\text{net}} = \frac{E_{m \neq n}}{\text{Null} + E_{m \neq n}}$$

Alignment & Sensitivity

• Two important network parameters that measure the alignment and sensitivity of the network to the two components of the incident gravitational-wave

Sensitivity to cross polarisation

NR Hybrid Waveform at 25 Mpc

Conclusions

- Coherent tool for gravitational-wave event candidate visualisation and follow up analysis
- Based upon the Coherent WaveBurst algorithms
- Currently supports all 2, 3, 4, and 5 detector network combinations of LIGO, GEO, and Virgo

References

- 1. Constraint likelihood analysis for a network of gravitational wave detectors, S. Klimenko et al, PRD 72: 122002, 2005
- 2. Phenomenological template family for black-hole coalescence waveforms, P. Ajith et al, CQG 24:S689, 2007
- 3. Data formats for numerical relativity waves, D. Brown et al, arXiv:0709.0093, 2007
- 4. Incorporating Numerical Relativity Waveforms into Gravitational Wave Data Analysis, Lucía Santamaría et al, GWDAW-12
- Coherent burst searches for GW from compact binary objects, S. Klimenko et al, GWDAW-12