Cosmological Sources of Stochastic Gravitational-Wave Background

Vuk Mandic University of Minnesota

GWDAW-12, MIT, 12/14/07

Landscape

Inflationary Models (1)

- Amplification of quantum vacuum fluctuations
 - » Modes larger than the horizon size are amplified as the Universe transitions from inflationary to radiation and matter phases.
- GW spectrum expected to be (nearly) flat.
 - » Tightest constraint comes from the CMB observations at large scales (small I): $\Omega_{\rm GW}$ < 10⁻¹⁴.
- However, details of inflation epoch are not understood, and likely involve violent events.
 - » Such events could leave substantial GW signals, on top of the "vacuum fluctuation" background.
- Many inflationary models include a period of preheating:
 - » As the inflaton oscillates at the bottom of the potential well, it resonantly excites some momentum modes of other fields to which it is coupled: parametric resonance.
 - There are at least two mechanisms for GW production during preheating.

Inflationary Models (2)

- The excited modes render the Universe inhomogeneous, which sources GWs.
 - » Khlebnikov and Tkachev: PRD56, 653 (1997).
 - » Easther and Lim: JCAP 0604, 10 (2006); astro-ph/0612294.
- Highly nonlinear, simulations are required.
- Spectrum peaks at the frequency corresponding to preheating energy scale:
 - » ~TeV ⇒ LISA, 10^9 GeV ⇒ LIGO.
 - » Much lower than GUT scale, but are possible (hybrid inflation models etc).

Peak amplitude independent of preheating energy scale.

→ Peak amplitude independent of preheating energy scale.

→ Peak amplitude independent of preheating energy scale.

Inflationary Models (3)

- Symmetry breaking at the end of inflation could lead to formation of bubble-like structures, corresponding to different vacua.
 - » Similar to 1st order phase transitions.
 - » Bubbles expand, travel, and collide, producing GWs
- Such situation can occur in hybrid inflationary models, which have symmetry breaking fields.
 - Sarcia and Figueroa, PRL98, 061302 (2007).
- Also involves preheating, so it is nonlinear and simulations are required.
 - Both mechanisms could produce substantially larger GW background than the vacuum fluctuations model, potentially within reach of LIGO/LISA/BBO.
 - Potentially new ways of probing inflationary physics.

Phase Transitions (1)

- 1st-Order Phase transitions could occur as the Universe cools.
 - » Symmetry-breaking process.
 - » Different parts of the Universe can take different vacua.
 - » Bubbles of different vacua are formed, they expand and collide.
- In the 1990's, GW spectrum due to bubble collisions was computed.
 - » Little interest: no 1st order transition due to EW symmetry breaking in the Standard Model.
 - » E.g. Kosowsky, Turner and Watkins, PRL69, 2026 (1992); PRD45, 4514 (1992).
- More recently: turbulence in the plasma can also produce GW background of similar scale.
 - » E.g. Kosowsky, Mack and Kahniashvili, PRD66, 024030 (2002).
- Also, 1st-order EW phase transition is possible in supersymmetric extensions of the Standard Model.
- Other possibilities:
 - » Turbulence in magnetic fields (dynamo effect) also produces GWs (Kosowsky, Mack and Kahniashvili, PRD66, 024030 (2002)).
 - » Helical turbulence can polarize GW background (Kahniashvili, Gogoberidze, and Ratra, PRL95, 151301 (2005)).
 - » Phase transitions possible in extra-dimensions models (Randall and Servant, JHEP 0705, 054 (2007)).

Phase Transitions (2)

- Recent extensive study: Grojean and Servant, hep-ph/0607107.
 - » Spectrum described by:
 - α: fraction of the vacuum energy deposited into GWs.
 - β⁻¹: duration of the transition.
 - » Amplitude, relative peak locations, slopes can be used to distinguish between models.
 - » Independent of the model (i.e. can be calculated for a given model).
 - » Includes both bubble collisions and turbulence mechanisms.
 - » Energy scale of the transition determines the peak of spectrum.
- There are models accessible to LIGO (10 PeV transitions).
- TeV scale phase transition would be observable with LISA.
 - » Complementary to LHC: constraining the Higgs sector.

Cosmic Strings

- Topological defects formed during phase transitions in the early Universe.
- Recently realized that fundamental or Dirichlet strings could also have cosmological scale.
 - » Potential window into string theory!
 - E.g.: N. Jones et al., JHEP 0207, 051 (2002); E.J. Copeland et al., JHEP 0406, 013 (2004); Dubath, Polchinski, Rocha, arXiv:0711.0994.
- Cosmic string cusps, with large Lorentz boosts, can create large GW signals.
- Look for the stochastic background created by superposing cusp signals throughout the Universe.
- Calculation done by Siemens, Mandic & Creighton, PRL98, 111101 (2007).
 - » Update on Damour & Vilenkin, PRD71, 063510 (2005).

Small-loop Case $p = 5 \times 10^{-3}$ $G\mu = 10^{-7}$

- If loop-size at formation is determined by gravitational back-reaction, the loops are small and of the same size.
- Parameters:
 - » Loop-size parametrized by: $10^{-13} < \varepsilon < 1$
 - **»** String tension: $10^{-12} < G\mu < 10^{-6}$
 - Upper bound from CMB observations.
 - Reconnection probability: 10⁻³
 - Determines the density of strings.
- Spectrum has a low-frequency cutoff.
 - » Determined by the string length and the angle at which we observe the cusp.
- Small ϵ or $G\mu$ push the cutoff to higher frequencies.
- Spectrum amplitude increases with G_μ and with 1/p.

AdvLIGO
--- Pulsar
--- BBN
• CMB
• LISA
* LIGO Burst

S4

LIGO H1L1 LIGO H1H2

- If loop-size at formation is determined by gravitational back-reaction, the loops are small and of the same size.
- Parameters:
 - » loop-size parametrized by: $10^{-13} < \varepsilon < 1$
 - **»** String tension: $10^{-12} < G\mu < 10^{-6}$
 - Upper bound from CMB observations.
 - Reconnection probability: 10⁻³
 - Determines the density of strings.
 - Spectrum has a low-frequency cutoff.
 - » Determined by the string length and the angle at which we observe the cusp.
- Small ϵ or $G\mu$ push the cutoff to higher frequencies.
- Spectrum amplitude increases with G_μ and with 1/p.

- If loop-size at formation is determined by gravitational back-reaction, the loops are small and of the same size.
- Parameters:
 - » loop-size parametrized by: $10^{-13} < \varepsilon < 1$
 - **»** String tension: $10^{-12} < G\mu < 10^{-6}$
 - Upper bound from CMB observations.
 - Reconnection probability: 10⁻³
 - Determines the density of strings.
- Spectrum has a low-frequency cutoff.
 - » Determined by the string length and the angle at which we observe the cusp.
- Small ε or Gμ push the cutoff to higher frequencies.
- Spectrum amplitude increases with G_μ and with 1/p.

LIGO-G070855-00-D

LIGO H1L1 LIGO H1H2

AdvLIGO

·Pulsar •BBN

CMB

LISALIGO Burst

- If loop-size at formation is determined by gravitational back-reaction, the loops are small and of the same size.
- Parameters:
 - » loop-size parametrized by: $10^{-13} < \varepsilon < 1$
 - **»** String tension: $10^{-12} < G\mu < 10^{-6}$
 - Upper bound from CMB observations.
 - » Reconnection probability: 10⁻³
 - Determines the density of strings.
- Spectrum has a low-frequency cutoff.
 - » Determined by the string length and the angle at which we observe the cusp.
- Small ϵ or $G\mu$ push the cutoff to higher frequencies.
- Spectrum amplitude increases with G_μ and with 1/p.

Large Loop Case

- Recent simulations indicate that loops could be large at formation, and therefore long-lived.
- Loop distribution more complex.
 - » Larger amplitudes of gravitationalwave spectra.
- Free parameters:
 - **»** String tension: $10^{-12} < G\mu < 10^{-6}$
 - » Reconnection probability: 10⁻⁴ < p < 1
- Assuming that loop-size is 10% of the horizon at the formation time.
 - Some simulations indicate that a more complicated distribution would be more accurate, involving both small and large loops.

Pre-Big-Bang Models (1)

Mandic & Buonanno, PRD73, 063008, (2006).

$$f_1 \simeq 4.3 \times 10^{10} \; \mathrm{Hz} \; \left(\frac{H_s}{0.15 M_{Pl}}\right) \left(\frac{t_1}{\lambda_s}\right)^{1/2}$$

Mechanism similar to inflation:

- » Amplification of vacuum fluctuations
- » Super-horizon modes are amplified during transitions between phases.
- Universe goes through several phases:
 - » Dilaton-dominated phase
 - » Stringy phase
 - » Radiation, followed by matter phase.
- 2 free parameters:
 - $> 1 < \mu < 1.5$
 - » f_s essentially unconstrained
- But: High-frequency amplitude goes as f_1^4 .
 - » f₁ depends on string related parameters, which are not well known.
 - We vary it by factor of 10 around the most "natural" value.

LIGO-G070855-00-D

Pre-Big-Bang Models (2)

- Scan f_1 μ plane for f_s =30 Hz.
- For each model, calculate $\Omega_{\rm GW}({\bf f})$ and check if it is within reach of current or future expected LIGO results.
- Beginning to probe the allowed parameter space.
- Currently sensitive only to large values of f_1 .
- Sensitive only to spectra close to flat at high-frequency.
- But, not yet as sensitive as the BBN bound:

$$\int \Omega_{\rm GW}(f) h_{100}^2 d(\ln f) < 6.3 \times 10^{-6}$$

Spectral Shape

- Boyle and Buonanno, arXiv:0708.2279
 - » Use the tensor-to-scalar ratio (to be measured by CMB B-mode) and the measurement of $\Omega_{\rm GW}({\bf f})$ by pulsar-timing and laser-interferometer experiments to constrain:
 - "effective" primordial tensor spectral index $n_t(f)$
 - "effective" equation of state parameter w(f) (appearing in $\alpha(f)$)
 - » Master Equation: $\Omega_0^{\mathrm{gw}}(f) = \left[A_1 A_2^{\hat{\alpha}(f)} A_3^{\hat{n}_t(f)}\right] r$
- Model independent way to obtain new information about the early Universe!
- Can also examine the possibility of "stiff", w=+1/3, energy component in the early Universe (pre BBN).
 - » May dominate the energy budget at sufficiently early times.

Combining CMB measurement of r and the BBN limit

Conclusions

- Variety of cosmological sources of GW background.
 - » Recently, much activity focused on inflationary, cosmic strings and phase transition models.
- Predicted backgrounds are often within reach of LIGO or LISA.
- Probing early Universe cosmology:
 - » Inflationary epoch, equation of state, alternative cosmologies.
- Probing high-energy physics:
 - » String theory, extra dimensions, Higgs sector (TeV scale phase transitions).
- Stay tuned the coming decade should be very interesting!