

→ E > < E >

< 🗇 🕨

Background Partial S5 Results Interpretation Summary

LIGO

Searches for a Stochastic Background of Gravitational Waves

John T. Whelan john.whelan@ligo.org

AEI Potsdam (for the LIGO Scientific Collaboration)

> AAS 211th Meeting 2008 January 9 G080001-03-Z

Background

- Stochastic Gravitational-Wave Backgrounds
- Cross-Correlation Method

2 Partial S5 Results

- Details of S5 Analysis
- PRELIMINARY Upper Limit Result
- Validation

Interpretation

- Comparison to other Limits
- Expected Sensitivity of Full S5 Analysis

< 🗇 🕨

· < 프 > < 프 >

Stochastic GW Backgrounds Cross-Correlation Method

イロト イポト イヨト イヨト

Background

Stochastic Gravitational-Wave Backgrounds

Cross-Correlation Method

Partial S5 Results

- Details of S5 Analysis
- PRELIMINARY Upper Limit Result
- Validation

- Comparison to other Limits
- Expected Sensitivity of Full S5 Analysis

Stochastic GW Backgrounds Cross-Correlation Method

イロト 不得 とくほ とくほとう

Sources of Stochastic Gravitational Waves

- Stochastic Gravitational-Wave background: superposition of unresolved GW sources
- "Cosmological" sources include inflation, pre-big-bang, phase transitions, cosmic strings
 - Probably \sim isotropic
- "Astrophysical" sources include unresolved binaries, neutron star instabilities, LMXBs
 - Can show anisotropies if dominated by local universe

Stochastic GW Backgrounds Cross-Correlation Method

Characterization of Stochastic GW Background

- Focus on isotropic, unpolarized, stationary, Gaussian backgrounds. (We also search for backgrounds w/strong anisotropy, but beyond scope of this talk)
- One way of defining spectrum of isotropic background: via gravitational-wave contribution to $\Omega = \frac{\rho}{\rho_{\text{crit}}}$:

$$\Omega_{\rm gw}(f) := \frac{1}{\rho_{\rm crit}} \frac{d\rho_{\rm gw}}{d\ln f} \equiv \frac{f}{\rho_{\rm crit}} \frac{d\rho_{\rm gw}}{df}$$

Note $\rho_{crit} \propto H_0^2$. Our results assume $H_0 = 72 \text{ km/s/Mpc}$

• Equivalent GW strain power (in interferometer w/⊥ arms)

$$S_{\rm gw}(f) = rac{3H_0^2}{10\pi^2} f^{-3} \,\Omega_{\rm gw}(f)$$

ヘロト ヘワト ヘビト ヘビト

Stochastic GW Backgrounds Cross-Correlation Method

Stochastic GW "Landscape"

LIGO

Stochastic GW Backgrounds Cross-Correlation Method

イロト イポト イヨト イヨト

Background

- Stochastic Gravitational-Wave Backgrounds
- Cross-Correlation Method

2 Partial S5 Results

- Details of S5 Analysis
- PRELIMINARY Upper Limit Result
- Validation

- Comparison to other Limits
- Expected Sensitivity of Full S5 Analysis

Stochastic GW Backgrounds Cross-Correlation Method

Expected Cross-Correlation

LIGO

• Cross-correlation between GW signals in pair of detectors:

$$\langle \widetilde{s}_1(f)^* \widetilde{s}_2(f) \rangle = \gamma(f) S_{gw}(f)$$

 Geometry enters via Overlap Reduction Function γ(f), depending on orientation & separation of detectors

Stochastic GW Backgrounds Cross-Correlation Method

Optimally Filtered Cross-Correlation Statistic

Assume Ω_{gw}(f) constant across band

LIGO

Cross-correlation gives point estimate of Ω_{gw}(f):

$$\widehat{\Omega} = \int df \, \widetilde{s}_1^*(f) \, \widetilde{Q}(f) \, \widetilde{s}_2(f)$$

Maximize sensitivity w/Optimal Filter

$$\widetilde{Q}(f) \propto rac{\gamma(f)}{f^3 P_1(f) P_2(f)}$$

• Can estimate error bar from noise:

$$\sigma \propto \left(T \int df \, \frac{[\gamma(f)]^2}{f^6 P_1(f) P_2(f)}\right)^{-1/2}$$

• Short-time estimates $\{\widehat{\Omega}_i\}$ weighted by $\{\sigma_i^{-2}\}$ & averaged

Details of S5 Analysis PRELIMINARY Upper Limit Result Validation

イロト イポト イヨト イヨト

Background

- Stochastic Gravitational-Wave Backgrounds
- Cross-Correlation Method

2 Partial S5 Results

- Details of S5 Analysis
- PRELIMINARY Upper Limit Result
- Validation

- Comparison to other Limits
- Expected Sensitivity of Full S5 Analysis

LIGO S5 Data Background Partial S5 Results Interpretation Summary

Details of S5 Analysis PRELIMINARY Upper Limit Result Validation

- LIGO Hanford Observatory (4 km H1, 2 km H2) observed 2005 Nov 4-2007 Sep 30
- LIGO Livingston Observatory (4 km L1) observed 2005 Nov 14-2007 Sep 30
- Preliminary, Partial result being presented here includes H1-L1 coïncident data up to 2007 Jan 22 378608 overlapped 60 sec segments
 ≈ 140 days effective observing time
- Duty cycles & sensitivity improved during run: Up to 2007 Jan 22 ≅ 1/2 of coïncident observing time & ~ 1/3 of noise-weighted observing time (total sensitivity)
- Use preliminary calibration; will be revised for final result; H2-L1 correlation measurements will also be included

LIGO

Details of S5 Analysis PRELIMINARY Upper Limit Result Validation Max-Planck-Institu

Frequency Range Determined by Sensitivity

Frequencies kept for analysis give 99% of sensitivity (measured by integrand of σ^{-2}): 41.5 Hz < f < 177.5 Hz (90% comes from range 48.5 Hz < f < 140.25 Hz)

Details of S5 Analysis PRELIMINARY Upper Limit Result Validation

イロト イポト イヨト イヨト

Background

- Stochastic Gravitational-Wave Backgrounds
- Cross-Correlation Method

2 Partial S5 Results

Details of S5 Analysis

PRELIMINARY Upper Limit Result

Validation

- Comparison to other Limits
- Expected Sensitivity of Full S5 Analysis

Details of S5 Analysis PRELIMINARY Upper Limit Result Validation

イロト イポト イヨト イヨト

PRELIMINARY Cross-Correlation Result

LIGO

 Optimally combined PRELIMINARY analysis of data to 2007 Jan 22 gives estimate on Ω_{gw}(f) (assumed to be constant over 41.5 Hz < f < 177.5 Hz)

$$\widehat{\Omega} = 1.0 \times 10^{-6}$$
 $\sigma = 5.2 \times 10^{-6}$

- Null result; set upper limit on Ω_{gw}(41.5 Hz < *f* < 177.5 Hz) by constructing Bayesian posterior:
 - S4 posterior as prior (\sim Gaussian w/90% UL 6.5 \times 10⁻⁵)
 - Marginalize over calibration errors (Gaussian priors) effectively adds systematic error of $\sigma^{cal} = 0.15\widehat{\Omega}$

Details of S5 Analysis PRELIMINARY Upper Limit Result Validation

ヨトメヨト

э

Posterior PDF

LIGO

90% confidence level upper limit is 9.0×10^{-6}

Details of S5 Analysis PRELIMINARY Upper Limit Result Validation

イロト イポト イヨト イヨト

Background

- Stochastic Gravitational-Wave Backgrounds
- Cross-Correlation Method

2 Partial S5 Results

- Details of S5 Analysis
- PRELIMINARY Upper Limit Result
- Validation

- Comparison to other Limits
- Expected Sensitivity of Full S5 Analysis

Details of S5 Analysis PRELIMINARY Upper Limit Result Validation

Time-Shift Analysis

LIGO

 Can simulate small time-shifts w/inverse Fourier transform of integrand of Ω

 Gaussian; best fit has standard deviation 5.20 × 10⁻⁶ consistent w/independently calculated σ = 5.21 × 10⁻⁶ LIGO

Background Partial S5 Results Interpretation Summary

Details of S5 Analysis PRELIMINARY Upper Limit Result Validation

・ロト ・回 ト ・ ヨト ・ ヨトー

Distribution in Time

Measurement combined from 378608 independent numbers $\widehat{\Omega}_i$; Can't quite histogram (different error bars σ_i) Can construct Gaussian deviates $\frac{\widehat{\Omega}_i - \widehat{\Omega}}{\sigma_i}$

Details of S5 Analysis PRELIMINARY Upper Limit Result Validation

ヘロト ヘアト ヘヨト ヘ

Injections of Simulated Signals

LIGO

- Have added simulated signals ("software injections") Can recover $\Omega_{gw}(f) \sim 4 \times 10^{-5}$ from full data stream
- Did 3 "hardware injections"; varying strengths & durations
 - Inject into instruments w/known forces on end test mirrors
 - Some common unknown calibration factors systematic calibration error only $\sigma^{\rm cal} = 0.12 \widehat{\Omega}$
 - Designed to have significant signal-to-noise; σ^{cal} bigger effect than statistical error bar σ

Details of S5 Analysis PRELIMINARY Upper Limit Result Validation

Hardware Injection Results

LIGO

	inj 1	inj 2	inj 3
T _{eff} (min)	12.9	29.3	215.5
$\Omega_{\sf gw}^{\sf inj}$	1.88	$1.76 imes 10^{-2}$	$6.3 imes 10^{-3}$
Ω	1.82	$2.31 imes 10^{-2}$	$6.9 imes 10^{-3}$
σ (statistical)	0.05	$0.13 imes 10^{-2}$	$0.2 imes 10^{-3}$
σ^{cal}	0.21	$0.27 imes 10^{-2}$	$0.8 imes 10^{-3}$

John T. Whelan john.whelan@ligo.org

Stochastic GW Searches, G080001-03-Z

Comparison to other Limits Expected Sensitivity of Full S5 Analysis

イロト イポト イヨト イヨト

Background

- Stochastic Gravitational-Wave Backgrounds
- Cross-Correlation Method

2 Partial S5 Results

- Details of S5 Analysis
- PRELIMINARY Upper Limit Result
- Validation

- Comparison to other Limits
- Expected Sensitivity of Full S5 Analysis

LIGO

Comparison to other Limits Expected Sensitivity of Full S5 Analysi

Stochastic GW "Landscape" Including New Result

Comparison to other Limits Expected Sensitivity of Full S5 Analysis

• • • • • • • • • • • •

Big-Bang Nucleosynthesis

LIGO

- BBN constrains energy density present @ nucleosynthesis: $\Omega \lesssim 1.1 \times 10^{-5}$
- Total contribution from GW background

$$\Omega_{\sf gw}^{\sf tot} = \int \frac{df}{f} \, \Omega_{\sf gw}(f)$$

- Our excluded background $\Omega_{gw}(f) = 9.0 \times 10^{-6}$ over 41.5 Hz < f < 177.5 Hz would have $\Omega_{gw}^{tot} = 1.3 \times 10^{-5}$ (Note 90% of sensitivity comes from 48.5 Hz < f < 140.25 Hz; energy in BG confined to that range would be $\Omega_{gw}^{tot} = 9.6 \times 10^{-6}$)
- Direct limits from LIGO now comparible to BBN limit

Comparison to other Limits Expected Sensitivity of Full S5 Analysis

イロト イポト イヨト イヨト

Background

- Stochastic Gravitational-Wave Backgrounds
- Cross-Correlation Method

2 Partial S5 Results

- Details of S5 Analysis
- PRELIMINARY Upper Limit Result
- Validation

- Comparison to other Limits
- Expected Sensitivity of Full S5 Analysis

Comparison to other Limits Expected Sensitivity of Full S5 Analysis

イロト イポト イヨト イヨト

Projecting Sensitivity for Full S5 Run

- PRELIMINARY result through 2007 Jan 22:
 - $\widehat{\Omega} = 1.0 \times 10^{-6}$ & $\sigma = 5.2 \times 10^{-6}$
 - 90% upper limit $\Omega_{gw}(41.5 \, \text{Hz} < f < 177.5 \, \text{Hz}) \le 9.0 \times 10^{-6}$
 - Used $\sim 1/2$ of coı̈ncident H1-L1 data in S5
- Expectations for full S5 analysis:
 - Error bar shrinks like square root of observing time
 - Sensitivity improved during S5; estimate ~ 1.7× improvement in error bar
 - Can think of partial result as $\sim 1/3$ of observing power

• Searched for stochastic GW background in LIGO S5 data through 2007 Jan 22

- Use optimally filtered cross-correlation technique; Look for correlations between 4km Livingston & Hanford detectors
- Analysis so far includes ~ 1/2 of coïncident observing time or ~ 1/3 of noise-weighted observing time (expect factor of ~ 1.7 increase in sensitivity for full S5)
- PRELIMINARY result (90% CL) $\Omega_{gw}(41.5 \,\text{Hz} < f < 177.5 \,\text{Hz}) \le 9.0 \times 10^{-6}$
- Direct LIGO measurements now comparable to constraints from big-bang nucleosynthesis

イロト イポト イヨト イヨト