Astrophysics Results to Future Measurements with Gravitational-wave Observatories

Szabolcs Márka for the LIGO Scientific Collaboration

TEGRAL

PennState, University Park, PA, 2008

RXTEIRHESSI

Overview

- 1. Why gravitational waves should be observed ?
- 2. What are we searching for ?
- **3.** What gives us the data ?
- 4. Do we have any interesting astrophysical results? SGRs? GRBs? Pulsars? Cosmic background?
- 5. What do we have to build to observe more of the Universe?
- 6. What do we expect to see with the advanced detectors?
- 7. Who is doing all of this?

Gravitational Wave Astronomy

Gravitational waves can carry unique information about black holes, neutron stars, supernovae, the early evolution of the universe, and gravity itself...

However, they are either extremely weak or extremely rare...

Some of the Ultimate Goals for the Observation of GWs

Tests of Relativity

- Wave propagation speed (delays in arrival time of bursts)
- Characterization of the radiation field (polarization of radiation of CW sources)
- Detailed tests of General Relativity (chirp waveforms)
- Black holes & strong-field gravity (merger, ringdown of excited BH)

•Gravitational Wave Astronomy (observation, populations, properties):

- -Compact binary inspirals
- -Gravitational waves and gamma ray burst associations
- -Black hole formation
- -Supernovae
- -Newly formed neutron stars spin down in the first year
- -Pulsars and rapidly rotating neutron stars
- -Stochastic background

- 1. Why gravitational waves should be observed ?
- 2. What are we searching for ?
- **3.** What gives us the data ?
- 4. Do we have any interesting astrophysical results? SGRs? GRBs? Pulsars? Cosmic background?
- 5. What do we have to build to observe more of the Universe?
- 6. What do we expect to see with the advanced detectors?
- 7. Who is doing all of this?

LIGO-G080014-00-D

New Window on the Universe

Foreseen sources:

Supernovae / GRBs:

"bursts"

- » burst like signals
- » coincidence with electromagnetic or neutrino detections

Compact binary inspiral:

"chirps"

- » Waveforms are described
- » search technique: matched templates

Pulsars:

"periodic"

- **»** search for observed neutron stars
- » all sky search (computing challenge)

Cosmological Signals

"stochastic"

» Shows up as correlated noise in different detectors

POSSIBILITY FOR THE UNEXPECTED IS VERY REAL!

- 1. Why gravitational waves should be observed ?
- 2. What are we searching for ?
- **3.** What gives us the data ?
- 4. Do we have any interesting astrophysical results? SGRs? GRBs? Pulsars? Cosmic background?
- 5. What do we have to build to observe more of the Universe?
- 6. What do we expect to see with the advanced detectors?
- 7. Who is doing all of this?

Optical Layout (not to scale)

Steel music wire 0.3 mm

Mirror Close-Up

0

18

Fused Silica(SiO₂)

- Mass ~ 10 kg
- Dia ~ 25 cm
- Thickness ~10 cm
- Roughness ~ 1 nm

Electromagnet mirror actuators

A Mirror in situ

Vibration Isolation

Optical tables are supported on "stacks" of weights & damped springs

Wire suspension used for mirrors provides additional isolation

Active isolation now being added at Livingston

Vacuum System

LIGO Observatories

- 1. Why gravitational waves should be observed ?
- 2. What are we searching for ?
- **3.** What gives us the data ?
- 4. Do we have any interesting astrophysical results? SGRs? GRBs? Pulsars? Cosmic background?
- 5. What do we have to build to observe more of the Universe?
- 6. What do we expect to see with the advanced detectors?
- 7. Who is doing all of this?

SGR 1806 Hyperflare

The SGR 1806-20 Hyper Flare of December 27, 2004

- Soft Gamma-ray Repeater SGR 1806-20 emits a record flare
- Distance [6 15] kpc
- Energy ~10⁴⁶ erg
- Pulsating tail lasting six minutes
- High Frequency QPOs (Israel et al. 2005, Watts & Strohmayer 2006)
 - » RXTE and RHESSI
 - » SGR 1900+14
- Plausibly mechanically driven

RHESSI X-ray light curve (20 -100 keV)

Objective:

Measure GW radiation associated with periods and frequency of observations

Gravitational Wave Energetics – SGR1806-20 Hyperflare

- For the 92.5Hz QPO observation (150s-260s)
 » E^{iso,90%} = 4.3 x 10⁻⁸ M_{sun}c²
- <u>This energy is comparable</u> to the energy released by the flare in the electromagnetic spectrum

- Assuming
 - » Isotropic emission
 - » Equal amount of power in both polarization (circular/unpolarized)
- E^{iso, 90%} is a characteristic energy radiated in the duration and frequency band we searched

GRB 070201 and M31

Astrophysical Event Triggered Searches

- » Gamma-ray transients (GRBs, SGRs)
- » Optical transients
- » Neutrino events

> ...

»

- Correlation in time
- Correlation in direction
- Information on the source properties

- ✓ Confident detection of GWs (eventually).
- ✓ Better background rejection \Rightarrow Higher sensitivity to GWs.
- ✓ More information about the source/engine.
- 🔺 🗹 Even upper limits can have interesting implications. 🔺

-213 GRB triggers from Nov 4 2005 to Sept 30 2007-

- GRB triggers (mostly from Swift, IPN, INTEGRAL, HETE-2)

- ~70% with double-IFO coincidence LIGO data
- ~40% with triple-IFO coincidence LIGO data
- ~25% with measured redshift
- LIGO-G080014-00-D ~15% short-duration GRBs

EM Observations - GRB 070201

Antenna responses of LIGO Hanford:

$$F_{RMS} = \sqrt{F_+^2 + F_\times^2} / \sqrt{2} = 0.304$$
$$h(t) = F_+(\theta, \phi, \psi)h_+(t) + F_\times(\theta, \phi, \psi)h_\times(t)$$

R.A. = 11.089 deg, $\overline{\text{Dec}} = 42.308 \text{ deg}$

GRB 070201 – Sky Location

M110 •

R.A. = 11.089 deg, Dec = 42.308 deg

D_{M31}≈770 kpc

Possible progenitors for short GRBs:

• NS/NS or NS/BH mergers Emits strong gravitational waves

• SGR May emit GW but weaker

E_{iso} ~ 10⁴⁵ ergs if at M31 distance (more similar to SGR than GRB energy)

Implications

In case of a detection:

- » Confirmation of a progenitor (e.g. coalescing binary system)
- » GW observation could determine the distance to the GRB

In case of non-detection:

- Exclude progenitor/model in mass-distance region
- Assumed M31 distance to hypothetical GRB ⇒ exclude binary progenitor
- Bound the GW energy emitted by a source in M31

A cumulative histogram of the expected number of background triggers in 180 s based on the analysis of the off source times (+)

LSC Results: Model Based Compact Binary Inspiral Search

Exclude compact binary progenitor with masses

 $1 \text{ M}_{\odot} < \text{m}_1 < 3 \text{ M}_{\odot}$ and $1 \text{ M}_{\odot} < \text{m}_2 < 40 \text{ M}_{\odot}$ with D < 3.5 Mpc away at 90% CL

Exclude any compact binary progenitor in our simulation space

at the distance of M31 at > 99% confidence level

LIGO-G080014-00-D

Results: Model Independent Compact Binary Inspiral Search

Efficiency > 0.878, 1.4 - 1.4 M_{\odot} Efficiency > 0.989, 1.4 - 10 M_{\odot}

These results give an independent way to reject hypothesis of a compact binary progenitor in M31

LIGO-G080014-00-D

Soft Gamma-ray Repeater in M31 ?

SGR: highly magnetized neutron star; can have giant flares (rare) (arXiv:0712.1502)

Scientific American, February 2003

Giant flare from an SGR:

- a hypothesized explanation for 070201 burst
- Energy release in gamma rays consistent with SGR model
 - Measured gamma-ray fluence = 2 x 10⁻⁵ ergs/cm² (Konus-Wind)

Corresponding gamma-ray energy, assuming isotropic emission, with source at D = 770 kpc (M31):

 $E_{\gamma,\rm iso} = \phi \times 4\pi D^2 \approx 10^{45} \,\rm ergs$

SGR models predict energy release in GW to be no more than ~10⁴⁶ ergs_{29 of 42}

STARQUARE ON A MACHETAR releases t value amoune of magnotic asserge aquity shere to the solumic asserge of a magnitude 21 contequity and information a finishi of plasma. The finish at gest respond by the magnotic field.

- Corresponding gamma-ray energy, assuming isotropic emission, with source at D = 770 kpc (M31): $E_{\gamma,\text{iso}} = \phi \times 4\pi D^2 \approx 10^{45} \text{ ergs}$
- SGR models predict energy release in GW to be no more than ~10⁴⁶ ergs

- 1. Why gravitational waves should be observed ?
- 2. What are we searching for ?
- **3.** What gives us the data ?
- 4. Do we have any interesting astrophysical results? SGRs? GRBs? Pulsars? Cosmic background?
- 5. What do we have to build to observe more of the Universe?
- 6. What do we expect to see with the advanced detectors?
- 7. Who is doing all of this?

- Major upgrade of LIGO interferometers
- A factor of $> \times$ few improvement in strain sensitivity: $> \times$ few³ in detectable volume
- 1 day of AdvLIGO observation \approx 1 year of current LIGO observation
- Detect gravitational waves regularly
- Installation : planed to start in 2011, Observation: start in 2014

Before Advanced LIGO

Enhanced LIGO: a factor of 2 improvement from the current LIGO
Installation and commissioning has just started (2 years)
S6: 1 year of triple coincidence data with improved sensitivities

Time-line

- Seismic noise
 - » Active isolation system
 - » Mirrors suspended as fourth (!!) stage of quadruple pendulums
- Thermal noise
 - » Suspension → fused silica fibers
 - » Test mass → more massive; better coatings
- Optical noise
 - » Laser power → increase to ~200 W
 - » Optimize interferometer response
 → signal recycling

Subsystem and Parameters	Advanced LIGO Reference Design	Initial LIGO Implementation
Comparison With initial LIGO Top Level Parameters		
Observatory instrument lengths; LHO = Hanford, LLO = Livingston Anticipated Minimum Instrument Strain Noise [rms, 100 Hz band]	LHO: 4km, 4km; LLO: 4km < 4x10 ⁻²³	LHO: 4km, 2km; LLO; 4km 4x10 ⁻²²
Displacement sensitivity at 150 Hz	~1x10 ⁻²⁰ m/√Hz	~1x10 ⁻¹⁹ m/√Hz
Fabry-Perot Arm Length	4000 m	4000 m
Vacuum Level in Beam Tube, Vacuum Chambers	<10 ⁻⁷ torr	<10 ⁻⁷ torr
Laser Wavelength	1064 nm	1064 nm
Optical Power at Laser Output	180 W	10 W
Optical Power at Interferometer Input	125 W	6 W
Optical power on Test Masses	800 kW	15 kW
Input Mirror Transmission	0.5%	3%
End Mirror Transmission	5-10 ppm	5-10 ppm
Arm Cavity Beam size (1/e^2 intensity radius)	6 cm	4 cm
Light Storage Time in Arms	5.0 ms	0.84 ms
Test Masses	Fused Silica, 40 kg	Fused Silica, 11 kg
Mirror Diameter	34 cm	25 cm
Suspension fibers	Fused Silica ribbons	Steel Wires
Seismic/Suspension Isolation System	3 stage active, 4 stage passive	Passive, 5 stage
Seismic/Suspension System Horizontal Attenuation	≥10 ⁻¹⁰ (10 Hz)	≥10 ⁻⁹ (100 Hz)
LIGO-G080014-00-D		

Seismic Isolation

Required for: Seismic noise reduction, Stable operation Combination of active and passive isolation stages.

Active system requirement x3000 attenuation @ 10Hz

Internal Active Isolation Platform

LSC

Passive Vibration Isolation Chain

• Quadruple pendulum:

- » ~10⁷ attenuation @10 Hz
- » Controls applied to upper layers; noise filtered from test masses

 Seismic isolation and suspension together:
 » 10⁻¹⁹ m/rtHz at 10 Hz Magnets Electrostatic

 Fused silica fiber
 Welded to 'ears', hydroxy-catalysis bonded to optic

Thermal Noise

Thermal vibration of the molecules of mirror / suspension material

High mechanical quality mirror substrate / coating materials

Low mechanical loss suspension fibers Fused silica fibers with silica bonding

Other challenges for mirrors

Large mirror (40kg):

large beam size (average out thermal fluctuations)
Small radiation pressure noise

Precision manufacturing/metrology:

Large radius of curvature
 Smooth polishing (<0.1nm RMS micro roughness)

Optical Absorption:

- Optical loss < 0.5 ppm/cm
- Thermal lensing compensation system

Fused silica mirror

- 1. Why gravitational waves should be observed ?
- 2. What are we searching for ?
- **3.** What gives us the data ?
- 4. Do we have any interesting astrophysical results? SGRs? GRBs? Pulsars? Cosmic background?
- 5. What do we have to build to observe more of the Universe?
- 6. What do we expect to see with the advanced detectors?
- 7. Who is doing all of this?

Cluster Map by Richard Powell

FIG. 1.— Goal sensitivity curves for interferometric GW detector facilities: InLIGO, VIRGO, AdLIGO, LISA, and NGLISA.

- There is a bold effort underway to get a new view of the universe
 - »- Initial LIGO has reached its design sensitivity
 - S5 accomplished : more than 1 year of data collected
 - Several astrophysically interesting results are out
 - Crab pulsar upper limit
 - Stochastic background
 - SGR1806-20
 - GRB070201
 - And others to come...
- Active data sharing collaboration with VIRGO
- Advanced LIGO should see sources... excitement is high!

We are grateful to:

Acknowledgments

• Members of the LIGO Laboratory, members of the LIGO Science Collaboration, National Science Foundation

LIGO Scientific Collaboration

LIGO Scientific Collaboration Demographic Makeup

- There are **563** people in the LSC (including undergraduates)
- Number of colleges, universities, and research institutions in the LSC: 55 *Hispanic, African American, Native American, US-based institutions only

LIGO Scientific Collaboration Geographic Makeup by State

LIGO Scientific Collaboration Geographic Makeup by Country

LIGO Scientific Collaboration

Gravita