A Bayesian perspective on the
unmodelled burst problem



Overview

[Not a detailed derivation of the bursts Bayesian search]

— arXiv:0712.0196

Maximum, constrained or regularized likelihood methods
— Are implicitly subjective

Every Monte-Carlo simulation has a corresponding optimal
search

— The likelihood/Bayes factor search using the same distributions
Priors intimately related to physics knowledge

— Bayesian analysis defined by physics model

— No “statistics” decisions involved

Implications? Where am | hopelessly naive?



The essential problem

 Asignal model Is necessary for any analysis

— Even supposedly model-independent methods have
implicit signal models

* We have limited (not zero) knowledge of It
* What do we do?



Notation

* Define a compact notation for multivariate
normal probability distribution functions

1 1 T w1 )
* 1 IS an n-vector describing the centre of the distribution

X IS an nxn covariance matrix describing the shape of
the distribution

* X IS an n-vector at which we evaluate the probability
distribution function




Physical system

* Use a linear model for the global network
X=F-h+¢

p(¢)=N(0,Z,¢)
* X IS the set of observations
* F is the response of the network to strain
* h the incident strain
* ¢ 1s a random variable representing noise
* X IS the covariance of the noise



Distributions

* Probability density
functions: r

p(X‘ Ho ) =N (O, > X) 5
p(X|h,H1): N(F°h,Z,X) I s

* Likelihood test:
p(x|H,) g
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What next?

 Standard, constraints, regularized and
Bayesian all agree up to this point

* The problem is that we have
p(X\ Hl):?
p(x|h,H,)=N(F-h,X,x)

— H, I1s not a simple hypothesis; it is parameterised
by the unknown strain h



Maximum likelihood

* We “need” to choose a value of h to evaluate p
— Use the “most probable” value

h(x)=argmax p(x|h,H,)
p(x|H,)= N(F h(x),Z, x): max, p(x|h,H,)

— Often, 1t works fine

 Problems

— We centre™* the distribution on the data, then use that
distribution to compute the probability of the data we
centred it on?

« “Drawing the bullseye around the bullethole”
— p(x | Hy) isn’t a distribution anymore (unnormalizable)



Maximum other things

* Instead, use the value of h that maximises something
else

— Hard constraint: constrain h, =0
* “Only move the bullseye vertically”

— Tikhonov: penalise by h?

* “Don’t move the bullseye too far”

— Soft constraint: penalise by (h,)?
* “Move the bullseye vertically freely but not too far horizontally

— (This doesn’t mean that they are ineffective)
* The process of maximising a function of x inherently
“peeks” at the data before performing the hypothesis
test
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Comparing methods

e Since the methods aren’t
“objective” or “unique,”
how do we choose?

* The community uses
ROC curves produced by
Monte-Carlo simulations
to compare classification
statistics (“noise” or
“signal”)

* The curve alone proves _1 o
nothing; it is contingent

talse alarm probability
on the signal (and) noise
models chosen

10°

—standard

detection probability




Formal definition

* A Monte Carlo analysis
samples (at least) two
distributions

— Noise distribution
p(x | Hy)

— Signal distribution

p(x | Hy)
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Optimal statistic

* For a given Monte-
Carlo simulation, the
optimal statistic Is the
likelihood ratio

p(x | Hy) / p(x| Hy)

— Any perturbation
worsens performance for
a given false alarm rate
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Currently we  Should we Instead

— Design various methods — Design a Monte Carlo
— Design a Monte-Carlo simulation
simulation — Implement the method
- Defines an optimal that is optimal
method — Not need to run it
— Test methods with the (except for Va|ida’[i0n)
simulation

« All guaranteed to be less
effective than the optimal
method



Not best practice?

* \We often use Monte-Carlo
simulations that inject
only a handful of
waveforms and
amplitudes, each many
times

« Optimal statistic clearly
“cheats” 1n this case

— Goes to something like a
template bank!

* The problem is not the
optimal statistic, but the
unreality of the simulation
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« Why do we attach any credibility to the simulations?

— Maybe we believe that the distribution Is in some sense
“smooth” over the space of waveforms, so our small zoo
sufficiently samples it

 Given the implicitness of this assumption, how do we know current
methods aren’t cheating? (Unlikely, because the methods don’t
seem to contain enough information; they too are “smooth™)

* |f we believe this, we should use this smooth
distribution in the Monte-Carlo simulation

— The optimal statistic then won’t cheat
— We’ll measure what we hope we’re measuring



Better practice

« \We should simulate a signal population that represents everything
we know about the real world p(h | H,)

* There’s no unique right model
— However, every model makes many definite physical predictions that
we can use to rule out many
» Rate doesn’t fall as energy increases
* Rate varies with direction
« Amplitude varies with direction
— People will disagree on the details
— Robustness over different models doesn’t require multiple simulations,
just that we average the models together
» If we’re ignorant, this will result in an uninformative general signal model

« This is the best we can do in absence of knowledge of the real
distribution



Implementing

* To sample from p(x | H,)
— Draw a sample strain h from p(h | H,)

— Next, draw a sample x from p(x | h, H,) =
N(F:h, X, X)

* This convolves the distributions
p(x|H,)=[_ p(xIh,H,)p(h[H,)dn

s T”“"’"”"m' "
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Prior

* We’ve just made a Bayesian prior plausibility
distribution p(h | H,)
— We don’t assert that p(h | H,) represents the
limiting behaviour of an infinite number of

experiments (i.e. the real distribution of
gravitational wave bursts)

— We only assert that it represents our prior
expectation for the first observation
 That observation changes our state of knowledge, and

we postulate a new prior for the second observation and
eventually converge on the truth



Marginalization

» Drawing h then x Is the same as drawing from the
Bayesian marginalized distribution

— Marginalization 1sn’t an arbitrary process like
(constrained) maximisation

— The subjectivity is wholly contained within the prior,
where it has an immediate physical interpretation

* The Bayesian analysis Is the optimal statistic of
the Monte-Carlo simulation with the same prior

— A big target, but drawn before we shoot!
* Why not go directly to the Bayesian search?



Practicality

 Typically, the superiority of Bayesian analysis IS
moot because the marginalization integral is too
expensive to compute

— Hence the approximation schemes of the field of
multivariate analysis, and the association of Bayesian
methods with Metropolis-Hastings and other numerical
methods

« However, the integral is soluble if we choose
p(h|H,)=N(0,Z,h), sothat

p(x | H, )= N(O, (z—l S F(FTE R4z (B ) f, xj



Multivariate normal distribution prior

 The prior is quite flexible — Interpolation between
— Sum of arbitrary number of simulated waveforms
templa‘te Waveforms e Set of a small number of
£ | waveforms
Xamples _ — Conservative enclosure of a
— Matched filter 200 of waveforms
* One waveform « Distribution inferred by
— White noise treating zoo as samples
« {e.}, Fourier basis, ... * \Well suited to searches

- Expresses as much ignorance  Where we are quite ignorant

aspossible — Not well-understood non-
— Spectra / bands / tiles / linear subspaces (inspiral
clusters search)

* €.g. weighted subset of
Fourier basis vectors



Independence?

e Gursel-Tinto claims it

“does not rely on any assumptions about the
waveforms and in fact works for gravitational-
wave bursts of any kind”

« Unfortunately, not true
— Impossible in principle under Bayesian paradigm
— We can even explicitly determine the priors



Implicit priors

* We can reverse the derivation to extract the signal prior
for a given statistic:
— Gursel Tinto: (improper) p(h | Hy) =1
 Implies infinite gravitational waves
— Tikhonov with regularizer o
p(h | Hl) = N(O’ (X_ll,h)
« Implies a particular signal energy
— Soft constraint: lim__,, for p(h | H;) = N(0, cl, h)
 Implies infinitesimal signals
— Hard constraint:
« Implies infinitesimal, optimally oriented, linearly polarised signals

* These aren’t “wrong”, but they do contradict the state
of knowledge of their creators



Glitches and cuts

« Everything also applies to the
noise model
— EXxcept we have much more
information (the data)
* We should include our best
knowledge of In the
simulation

« “Cuts” to suppress glitches
exclude parts of observation space

In attempt to repair our use of a
noise model we know is wrong
— [For example, incoherent energies

— They are unnecessary / automatic if
we can include them in the noise
model

— They are a kind of multivariate
analysis by hand
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Glitchy noise

o

Glitchy noise |

5k

Bayes -
factors ‘||

White noise .|l
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Directions

» Same problems as h
— Actually p(x | 6, ¢, h, H,)

— Maximum (constrained)
likelihoods similarly find best-
fit 0, ¢

 Implicit unphysical bias (rate
varies with direction)

— Explicit p(d, ¢, | H,) for Monte- " -
Carlo and Bayesian

 Physical prior performs better

-3 _ —
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Nascent Bayesian search

Likelihood ratio around 2 W1 trigoer for different signal sizes and arrival times

K T IR

Likelihood ratio

WN i ”W”

=8 Direction marginalized

T=3e-22 H
a=te-22 [

== Bayes factor as a f

7=1e-23 H

U
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Implications?

* Current methods are biased — Marginalize rather than
(workarounds in X-Pipeline) maximise over direction
— Can be fixed with very minor * Very cheap simple change
code changes and no — Marginalize over several
performance penalty Tikhonov regularizer values
— Use the Tikhonov weights (a « Expensive but removes expected
energy bias

Bayesian special case)
.” Makes a Bayesian search witha * DO We need a consensus

proper prior for signal energy physically realistic signal
that can be peaked at threshold model?

of detection
+ Minimal changesto current ~ *  INnstead of ad-hoc cuts and

pipelines statistics, it Is practical to use
— Add a normalizing function of physical models of signals and
direction glitchy noise

* \ery cheap and simple change
removes directional bias
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Quadratic form

 For stationary signals,

the Bayesian statistic Is
similar in form
— Easily retrofitted into

other pipelines Y

« Statistic isosurfaces for |
— Standard

_ Soft

— Hard
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Bad practice

* Forming ROC curves for
— Particular waveforms
— Particular SNRs

 This Is the performance of the method on a
tiny subspace of any credible signal population



Bayesian

 Bayesian inference lets us turn p(x | h, H,) into
p(x | H,) without peeking at x.

— Instead we s
probable) a
distribution

* This is a subj

pecify a priori how plausible (not
particular h is with a prior plausibility

0(h)
ective choice

— Choosing what to maximise Is no less subjective

* In fact, all the maximisation schemes above are
precisely equivalent to certain (weird) choices of prior

—p(h) hasan i

mmediate physical interpretation



Physicality of Priors

* Priors are not probability distributions

— p(h) does not purport to be the limiting frequency of
many gravitational wave experiments

— p(h) it represents how plausible we think the
occurrence of a waveform is, and hence
 Physical statements about bursts we agree with
« How much we would bet on a particular waveform occurring
« A waveform generator that we would find credible in a
Monte Carlo simulation

— Priors are capable of representing ignorance



Monte-Carlo

Given two statistics, how do we evaluate their
relative performance?

We perform a Monte-Carlo simulation and
construct the ROC curves

To do so, we must use some kind of signal
model

The usefulness of the simulation Is contingent
on the credibility of the signal model



Bayesian analysis

* Form the posterior odds ratio for two hypotheses
H. given data X
p(H, 1x) _ p(H,) p(xIH,) _,
p(Ho1x)  p(H,) p(x|H,)
» Requires an explicit distribution for both
hypotheses to form the likelihood ratio
p(x|H,) _ p(H,) _
p(x|H,) p(H,)

* Not particularly “Bayesian” yet

>




Plausibility vs. probability

* The probability distribution for bursts Is
unknown*

» Use a plausibility distribution
— Does not assert that it is the limiting behaviour over

many experiments

 The results of the experiment inform the prior plausibility
distribution for the next experiment, and we asymptote to the
true probability distribution*
— Does reflect our state of knowledge, and encodes many
concrete physical predictions

 For example, the prior should imply that signals are rare and
large signals are rarer than small signals



Bayesian

\mi'.

oo ”.:

The statistic is the quotient of
the signal and noise distributions
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Monte-Carlo analogy

— Monte-Carlo simulations perform random draws
from signal and noise distributions

* For any Monte-Carlo simulation there is a
unique optimal Bayesian search and vice versa

— Both defined by p(x | H)

* |Insofar as we believe that a Monte-Carlo
simulation i1s useful, we should use Its
corresponding Bayesian search



Classification

 All detection algorithms,
Bayesian or otherwise, partition
space of possible observations X
Into detection and non-detection

« Most non-Bayesian methods do
this by generating a statistic
whose isosurfaces form A
partitions of different confidence "\ uss
levels




Working backwards

The signal distribution is the quotient of
the statistic and the noise distribution

(up to monotonic transformation)

2/24/2008
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Implicit signal priors

« \We can deduce the implicit signal prior plausibility
distribution for non-Bayesian methods!

« GT asserts infinite signal energy

 Constraint asserts infinitesimal energy

 Tikhonov asserts a specific energy (= regularizer1)

« All optimal for (rate and/or energy) varying across the sky

* These are not credible priors

— We would not find the results of corresponding MC tests
particularly compelling

 We can immediately think of better MC simulations to run
* This Is not to say that existing searches perform poorly



Equivalence

« Families of partitions of space of observations

» Equivalence between a partition and a signal
model
— All methods assume a signal model from Bayesian
perspective
— Prior plausibility is not probability — does not
assert that it represents distribution of many
experiments
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Credibility

* The credibility of a
Monte-Carlo simulation
depends on the
Injections and noise
used
— The simulation on the

right tests only one large

waveform and has
glitchless noise

— It tells us almost nothing
about real-world
performance
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