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Overview

• [Not a detailed derivation of the bursts Bayesian search]
– arXiv:0712.0196

• Maximum, constrained or regularized likelihood methods 
– Are implicitly subjective

• Every Monte-Carlo simulation has a corresponding optimal 
search
– The likelihood/Bayes factor search using the same distributions

• Priors intimately related to physics knowledge
– Bayesian analysis defined by physics model

– No “statistics” decisions involved

• Implications? Where am I hopelessly naive?
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The essential problem

• A signal model is necessary for any analysis

– Even supposedly model-independent methods have 

implicit signal models

• We have limited (not zero) knowledge of it

• What do we do?
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Notation

• Define a compact notation for multivariate 

normal probability distribution functions

• μ is an n-vector describing the centre of the distribution

• Σ is an n×n covariance matrix describing the shape of 

the distribution

• x is an n-vector at which we evaluate the probability 

distribution function
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Physical system

• Use a linear model for the global network

• x is the set of observations

• F is the response of the network to strain

• h the incident strain

• ε is a random variable representing noise

• Σ is the covariance of the noise

   



,,0 



Np

hFx

2/24/2008 5A Searle, LIGO-G080042-00-0



Distributions

• Probability density 
functions:

• Likelihood test:

   

   

 
 







0

1

1

0

|

|

,,,|

,,0|

Hxp

Hxp

xhFNHhxp

xNHxp

2/24/2008 6A Searle, LIGO-G080042-00-0



What next?

• Standard, constraints, regularized and 

Bayesian all agree up to this point

• The problem is that we have

– H1 is not a simple hypothesis; it is parameterised 

by the unknown strain h
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Maximum likelihood

• We “need” to choose a value of h to evaluate p
– Use the “most probable” value

– Often, it works fine

• Problems
– We centre* the distribution on the data, then use that 

distribution to compute the probability of the data we 
centred it on?
• “Drawing the bullseye around the bullethole”

– p(x | H1) isn’t a distribution anymore (unnormalizable)
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Maximum other things

• Instead, use the value of h that maximises something 
else
– Hard constraint: constrain h2 = 0

• “Only move the bullseye vertically”

– Tikhonov: penalise by h2

• “Don’t move the bullseye too far”

– Soft constraint: penalise by (h2)
2

• “Move the bullseye vertically freely but not too far horizontally”

– (This doesn’t mean that they are ineffective)

• The process of maximising a function of x inherently 
“peeks” at the data before performing the hypothesis 
test
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Comparing methods

• Since the methods aren’t 
“objective” or “unique,” 
how do we choose?

• The community uses 
ROC curves produced by 
Monte-Carlo simulations 
to compare classification 
statistics (“noise” or 
“signal”)

• The curve alone proves 
nothing; it is contingent 
on the signal (and) noise 
models chosen
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Formal definition

• A Monte Carlo analysis 

samples (at least) two 

distributions

– Noise distribution

p(x | H0)

– Signal distribution

p(x | H1)
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Optimal statistic

• For a given Monte-

Carlo simulation, the 

optimal statistic is the 

likelihood ratio

p(x | H1) / p(x | H0)

– Any perturbation 

worsens performance for 

a given false alarm rate

2/24/2008 12A Searle, LIGO-G080042-00-0



• Currently we

– Design various methods

– Design a Monte-Carlo 

simulation

• Defines an optimal 

method

– Test methods with the 

simulation

• All guaranteed to be less 

effective than the optimal 

method

• Should we instead

– Design a Monte Carlo 

simulation

– Implement the method 

that is optimal

– Not need to run it 

(except for validation)
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Not best practice?

• We often use Monte-Carlo 
simulations that inject 
only a handful of 
waveforms and 
amplitudes, each many 
times

• Optimal statistic clearly 
“cheats” in this case
– Goes to something like a 

template bank!

• The problem is not the 
optimal statistic, but the 
unreality of the simulation
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• Why do we attach any credibility to the simulations?

– Maybe we believe that the distribution is in some sense 
“smooth” over the space of waveforms, so our small zoo 
sufficiently samples it

• Given the implicitness of this assumption, how do we know current 
methods aren’t cheating? (Unlikely, because the methods don’t 
seem to contain enough information; they too are “smooth”)

• If we believe this, we should use this smooth 
distribution in the Monte-Carlo simulation

– The optimal statistic then won’t cheat

– We’ll measure what we hope we’re measuring
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Better practice

• We should simulate a signal population that represents everything 
we know about the real world p(h | H1)

• There’s no unique right model
– However, every model makes many definite physical predictions that 

we can use to rule out many
• Rate doesn’t fall as energy increases

• Rate varies with direction

• Amplitude varies with direction

– People will disagree on the details

– Robustness over different models doesn’t require multiple simulations, 
just that we average the models together
• If we’re ignorant, this will result in an uninformative general signal model

• This is the best we can do in absence of knowledge of the real 
distribution
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Implementing

• To sample from p(x | H1)

– Draw a sample strain h from p(h | H1)

– Next, draw a sample x from p(x | h, H1) = 

N(F·h, Σ, x)

• This convolves the distributions
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Prior

• We’ve just made a Bayesian prior plausibility 
distribution p(h | H1)

– We don’t assert that p(h | H1) represents the 
limiting behaviour of an infinite number of 
experiments (i.e. the real distribution of 
gravitational wave bursts)

– We only assert that it represents our prior 
expectation for the first observation

• That observation changes our state of knowledge, and 
we postulate a new prior for the second observation and 
eventually converge on the truth
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Marginalization

• Drawing h then x is the same as drawing from the 
Bayesian marginalized distribution

– Marginalization isn’t an arbitrary process like 
(constrained) maximisation

– The subjectivity is wholly contained within the prior, 
where it has an immediate physical interpretation

• The Bayesian analysis is the optimal statistic of 
the Monte-Carlo simulation with the same prior

– A big target, but drawn before we shoot!

• Why not go directly to the Bayesian search?
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Practicality

• Typically, the superiority of Bayesian analysis is 

moot because the marginalization integral is too 

expensive to compute

– Hence the approximation schemes of the field of 

multivariate analysis, and the association of Bayesian 

methods with Metropolis-Hastings and other numerical 

methods

• However, the integral is soluble if we choose
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Multivariate normal distribution prior

• The prior is quite flexible
– Sum of arbitrary number of 

template waveforms

• Examples
– Matched filter

• One waveform

– White noise
• {ei}, Fourier basis, ...

• Expresses as much ignorance 
as possible

– Spectra / bands / tiles / 
clusters
• e.g. weighted subset of 

Fourier basis vectors

– Interpolation between 
simulated waveforms
• Set of a small number of 

waveforms

– Conservative enclosure of a 
zoo of waveforms
• Distribution inferred by 

treating zoo as samples

• Well suited to searches 
where we are quite ignorant
– Not well-understood non-

linear subspaces (inspiral
search)
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Independence?

• Gursel-Tinto claims it 

“does not rely on any assumptions about the 

waveforms and in fact works for gravitational-

wave bursts of any kind”

• Unfortunately, not true

– Impossible in principle under Bayesian paradigm

– We can even explicitly determine the priors
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Implicit priors

• We can reverse the derivation to extract the signal prior 
for a given statistic:
– Gursel Tinto: (improper) p(h | H1) = 1

• Implies infinite gravitational waves

– Tikhonov with regularizer α: 
p(h | H1) = N(0, α–1I,h)
• Implies a particular signal energy

– Soft constraint: limσ→0 for p(h | H1) = N(0, σI, h)
• Implies infinitesimal signals

– Hard constraint:
• Implies infinitesimal, optimally oriented, linearly polarised signals

• These aren’t “wrong”, but they do contradict the state 
of knowledge of their creators
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Glitches and cuts
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• Everything also applies to the 
noise model
– Except we have much more 

information (the data)

• We should include our best 
knowledge of glitches in the 
simulation

• “Cuts” to suppress glitches 
exclude parts of observation space 
in attempt to repair our use of a 
noise model we know is wrong
– For example, incoherent energies

– They are unnecessary / automatic if 
we can include them in the noise 
model

– They are a kind of multivariate 
analysis by hand



Glitchy noise
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Directions

• Same problems as h

– Actually p(x | θ, ϕ, h, H1)

– Maximum (constrained) 
likelihoods similarly find best-
fit θ, ϕ

• Implicit unphysical bias (rate 
varies with direction)

– Explicit p(θ, ϕ, | H1) for Monte-
Carlo and Bayesian

• Physical prior performs better
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Nascent Bayesian search
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Direction marginalized 

Bayes factor as a function 

of arrival time and signal 

size, in restricted X-

Pipeline search on a 

timeshifted JW1 peak 

correlator triple trigger

The covariance matrix Σ for simulated 

H1L1 in prototype full search



Implications?

• Current methods are biased 
(workarounds in X-Pipeline)
– Can be fixed with very minor 

code changes and no 
performance penalty

– Use the Tikhonov weights (a 
Bayesian special case) 
• Makes a Bayesian search with a 

proper prior for signal energy 
that can be peaked at threshold 
of detection

• Minimal changes to current 
pipelines

– Add a normalizing function of 
direction
• Very cheap and simple change 

removes directional bias

– Marginalize rather than 
maximise over direction
• Very cheap simple change

– Marginalize over several 
Tikhonov regularizer values
• Expensive but removes expected 

energy bias

• Do we need a consensus 
physically realistic signal 
model?

• Instead of ad-hoc cuts and 
statistics, it is practical to use 
physical models of signals and 
glitchy noise
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Quadratic form

• For stationary signals, 

the Bayesian statistic is 

similar in form

– Easily retrofitted into 

other pipelines

• Statistic isosurfaces for

– Standard

– Bayesian

– Soft

– Hard
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Bad practice

• Forming ROC curves for

– Particular waveforms

– Particular SNRs

• This is the performance of the method on a 

tiny subspace of any credible signal population
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Bayesian

• Bayesian inference lets us turn p(x | h, H1) into 
p(x | H1) without peeking at x.

– Instead we specify a priori how plausible (not 
probable) a particular h is with a prior plausibility 
distribution p(h)

• This is a subjective choice

– Choosing what to maximise is no less subjective

• In fact, all the maximisation schemes above are 
precisely equivalent to certain (weird) choices of prior

– p(h) has an immediate physical interpretation
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Physicality of Priors

• Priors are not probability distributions

– p(h) does not purport to be the limiting frequency of 

many gravitational wave experiments

– p(h) it represents how plausible we think the 

occurrence of a waveform is, and hence

• Physical statements about bursts we agree with

• How much we would bet on a particular waveform occurring

• A waveform generator that we would find credible in a 

Monte Carlo simulation

– Priors are capable of representing ignorance

2/24/2008 33A Searle, LIGO-G080042-00-0



Monte-Carlo

• Given two statistics, how do we evaluate their 

relative performance?

• We perform a Monte-Carlo simulation and 

construct the ROC curves

• To do so, we must use some kind of signal 

model

• The usefulness of the simulation is contingent 

on the credibility of the signal model
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Bayesian analysis

• Form the posterior odds ratio for two hypotheses 
Hi given data x

• Requires an explicit distribution for both 
hypotheses to form the likelihood ratio

• Not particularly “Bayesian” yet
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Plausibility vs. probability

• The probability distribution for bursts is 
unknown*

• Use a plausibility distribution 
– Does not assert that it is the limiting behaviour over 

many experiments
• The results of the experiment inform the prior plausibility 

distribution for the next experiment, and we asymptote to the 
true probability distribution*

– Does reflect our state of knowledge, and encodes many 
concrete physical predictions
• For example, the prior should imply that signals are rare and 

large signals are rarer than small signals
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Bayesian

The statistic is the quotient of 

the signal and noise distributions
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Monte-Carlo analogy

– Monte-Carlo simulations perform random draws 
from signal and noise distributions

• For any Monte-Carlo simulation there is a 
unique optimal Bayesian search and vice versa

– Both defined by p(x | Hi) 

• Insofar as we believe that a Monte-Carlo 
simulation is useful, we should use its 
corresponding Bayesian search
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Classification

• All detection algorithms, 
Bayesian or otherwise, partition 
space of possible observations x
into detection and non-detection

• Most non-Bayesian methods do 
this by generating a statistic 
whose isosurfaces form 
partitions of different confidence 
levels
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

Working backwards
The signal distribution is the quotient of 

the statistic and the noise distribution

(up to monotonic transformation)
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Implicit signal priors

• We can deduce the implicit signal prior plausibility 
distribution for non-Bayesian methods!

• GT asserts infinite signal energy

• Constraint asserts infinitesimal energy

• Tikhonov asserts a specific energy (= regularizer–1)

• All optimal for (rate and/or energy) varying across the sky

• These are not credible priors

– We would not find the results of corresponding MC tests 
particularly compelling

• We can immediately think of better MC simulations to run

• This is not to say that existing searches perform poorly
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Equivalence

• Families of partitions of space of observations

• Equivalence between a partition and a signal 

model

– All methods assume a signal model from Bayesian 

perspective

– Prior plausibility is not probability – does not 

assert that it represents distribution of many 

experiments

2/24/2008 42A Searle, LIGO-G080042-00-0



2/24/2008 43A Searle, LIGO-G080042-00-0



Credibility

• The credibility of a 
Monte-Carlo simulation 
depends on the 
injections and noise
used

– The simulation on the 
right tests only one large 
waveform and has 
glitchless noise

– It tells us almost nothing 
about real-world 
performance
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