

Techniques in LSC Searches for GW Bursts Associated with GRBs

Patrick Sutton

Cardiff University, for the LIGO Scientific Collaboration

Outline

- Classes of GRB searches
- How GRB information is used in burst GW searches
- GW burst search techniques
- Search procedures
- Example: GRB070201
- Where we could use help

Why use Astrophysical Triggers?

- Ready association of detected GW signal with known astrophysical system
 - Will help extract maximum scientific information information.

- Know time of event
 - Can concentrate efforts to probe sensitively small amount of data around the event time.
- Often know sky position
 - Can account for time delay, antenna response of instrument in consistency tests
 - Better background rejection
- Sensitivity improvement:
 - Often a factor of ~2-3 in amplitude / 4-10 in energy.

ILIAS GRB Workshop, 2008.02.26

Sutton: Techniques in LSC Searches for GWs Associated with GRBs

GRB-based Searches for GWs

- LSC's GRB-triggered searches are motivated by the hypothesized progenitor.
- Short GRBs: widely thought to be produced by NS-NS or NS-BH coalescence.
 - GW emission well-modelled; can use matched filtering (Alex's talk)
 - See also James's talk on pulsar glitches
- Long GRBs: convincingly associated with hypernovae.
 - GW emission not well-modelled; need to use techniques for detecting generic ``bursts" of GWs.
 - Less sensitive than matched filtering, but more robust.
 - LSC: Apply burst search techniques to both long *and* short GRBs
 - Just in case ...

How GRB Information is Used

- GRB trigger time
 - Look for GW signal within ~few minutes of the GRB
- GRB sky position
 - Search only the relevant portion of the sky, or
 - Veto candidates not consistent with the time delay between detectors.
 - Light travel time between LIGO sites = 10 ms
 - Light travel time LIGO and Virgo = 27 ms
- GRB redshift:
 - Used a posteriori in constraining characteristics of GRB population.

What we don't use

- GRB duration
 - except for classification of long/short GRB
- Temporal structure of the EM emission
 - Including, e.g., late-time flares or other activity.

GW Burst Detection Algorithms

- Cross-correlation:
 - Measure correlation between data streams of pairs of detectors on 25 ms and 100 ms timescales.
 - Simple and robust.
 - Used in LSC science runs S2-S4 and for GRB070201 in S5.
- Coherent network methods:
 - Construct linear combinations of data from multiple detectors, weighted by relative sensitivity to the sky location of the GRB, to maximise the SNR of any GW signal present. Search time-frequency map of that data for excess energy.
 - Typically more sensitive than cross-correlation.
- Both of these types of searches are orthogonal / complementary to the Virgo WDF search procedure (Alessandra's talk).

ILIAS GRB Workshop, 2008.02.26

Cross-Correlation Analysis

- Use triggers from satellites
 - Swift, HETE-2, etc.
 - Both short and long GRBs
- Correlate data between pairs of detectors around time of event
 - 25 100 ms target signal duration
 - [-2,+1] min around GRB
- Compare largest measured CC to neighbouring times with no GRB signal.
 - Compute distribution of CC values from neighbouring data.
 - Improbably large CC equals candidate GWB

Search Methods

- When the signal waveform is unknown (i.e., usually):
 - Cross-correlation of data from pairs of detectors (S2-S4 GRBs)
 - Excess power power analysis of each detector separately.
 - Coherent combinations of data from several GW detectors (aperture synthesis)
 - Next "big thing" in externally triggered searches.
 - All: look for any GW signal in the sensitive band of the detectors (~ 60 – 2000 Hz) with duration from ~1 ms to ~1 sec.

Excess power map: A simulated 1.4-10.0 M_o neutron star – black hole inspiral at an effective distance of 37 Mpc, added to simulated H1-H2 noise.

Chatterji et al., 2006 PRD 74 082005; Klimenko et al., 2005 PRD 72 122002; Rakhmanov M, 2006 CQG 23 S673

ILIAS GRB Workshop, 2008.02.26

Sutton: Techniques in LSC Searches for GWs Associated with GRBs G080050-00-Z #9

The Search

- The data is divided into two sets:
 - On-source: [-2, +1] min around the GRB trigger.
 - Off-source: all other data within +/- 1.5 hr of the GRB, divided into blocks of the same length as the on-source period.
- The on-source data is searched for large cross-correlations / excess energy events.
 - The significance of each cc / event is estimated by comparing to typical values in the off-source data.
- Assign probability to the "loudest" event
 - P := fraction of off-source blocks that produced event as loud.
 - Small P means a possible GW detection.
- Estimate minimum detectable GW signal amplitude by adding simulated GWs to the data and re-analysing.
 - Upper limit := signal amplitude/energy at which 90% of simulations are louder than the loudest on-source event.

ILIAS GRB Workshop, Sub 2008.02.26

Ex: Cross-Correlation Analysis of GRB 070201

Sky position consistent with M31 (Andromeda)

- E_{iso} ~ 10⁴⁵ erg at M31 distance (770 kpc)
- Plot: Energy limits vs. GW frequency from cross-correlation analysis
- LIGO cannot exclude SGR in M31.

ArXiv:0711.1163; to appear in ApJ

ILIAS GRB Workshop, 2008.02.26

Sutton: Techniques in LSC Searches for GWs Associated with GRBs G080050-00-Z #11

ILIAS GRB Workshop, 2008.02.26

Sutton: Techniques in LSC Searches for GWs Associated with GRBs

Coherent Methods & Glitches

- Coherent methods typically measure several properties of a GW candidate, such as the energy in each of the two GW polarizations.
 - Background noise glitches do not give same reconstructed polarizations as simulated GWs.
- Better information on, *e.g.*, polarization of GW emission from hypernovae would give stronger tests.

Statistical & Population Studies

- Statistical search for cumulative effect of many weak GWs
 - Plot: binomial test comparing distribution of probabilities of loudest events to that expected for null hypothesis.
- Constraining GRB population parameters:
 - demonstrated with toy-model standard-candle GW emission: Mohanty, CQG 23 (2006) S723-S732.
 - S5: Incorporate priors; e.g. redshift distribution model.

36 GRBs from S2-S4

ILIAS GRB Workshop, 2008.02.26

Sutton: Techniques in LSC Searches for GWs Associated with GRBs G080050-00-Z #13

Summary

- LSC has looked for GWs associated with GRBs for several years, using several different techniques.
 - S2, S3, S4 data (39 GRBs): cross-correlation algorithm.
 - Also statistical study.
 - SGR1806-20 hyperflare (Dec 2004): QPO search using single-detector excess power, looking at QPO-related frequencies.
 - Not discussed in this talk.
 - No detections yet.
- Expected for S5 (~213 GRBs):
 - Cross-correlation & coherent algorithms (in progress).
 - Network methods are expected to yield better upper limits (if no detection).
 - Large GRB (& SGR) dataset allows for more significant statistical studies.

How you can help.

- Choice of on-source interval.
 - Traditional: We look for GW signals in the window [-2, +1] min around the GRB. Can we tighten this?
 - Should we be looking at late-time flares?
- Waveforms!
 - Frequency ranges, durations, polarization, any similar info can be used to improve sensitivity.
- What *not* to bother looking for?