

GRB triggered inspiral searches for gravitational waves in LIGO data

Alexander Dietz

for the LIGO Scientific Collaboration

Cardiff University

United Kingdom

G080051-00-Z

Contents

- Gravitational waves and S5
- GRB-triggered inspiral searches
- Analysis and results for GRB 070201
- Outlook

Different Sources

Detector Sites

LIGO recently finished a 2 year science run (S5)

Status of LIGO

Horizon distance for the LIGO detectors

Horizon distance:

Distance for an optimal located and oriented binary that would produce a SNR of 8

Search method

- Burst Search:
 - Search for un-modeled burst of GW
 - Cross-correlation between two data streams or coherent search (see Patrick's talk)
- Inspiral search:
 - Search for a modeled GW (post-Newtonian waveform)
 - Cross-correlation between data and predicted waveform

Inspiral search Pipeline

- Template Bank:
 - Covers physical parameter space (i.e. Masses)
 - Placing so that any signal in between has maximum 3% mismatch with closest template

Inspiral search II

- Matched filtering:
 - Cross correlation of data with a template
 - Best method to identify known signal in Gaussian noise

Inspiral search III

- Coincidence:
 - Each trigger is assigned an ellipsoid in 3dimensional parameter space (t₂, m₁, m₂)
 - Two trigger coincident, if ellipsoid overlap
 - Scaling of ellipsoids: Determined from metric and simulations Contact Function

GRB Workshop Rome

Gamma Ray Bursts

- Long GRBs (t>2s):
 - Core-collapse of massive stars
 - Supernovae identified with long GRB
- Short GRBs (t<2s):</p>
 - Origin still unknown
 - Increasing hints for merger progenitor
 - Are there any subclasses (SGR, NSNS, NSBH)?
 - Theoretical updates?

- Un-triggered search
 - Location and time of a putative GW source unknown
- Triggered search:
 - GRB gives time and sky location
 - Gives geometrical time-delay between different detectors
 - The GRB triggered search can probe deeper into the data (lower SNR threshold)

Triggered searches II

Background

Determined by off-source segments

Foreground:

- Determined by on-source segment
- What is a reliable onsource window length?

GRB 070201

- Short GRB $(T_{90}=0.15 \text{ s})$
- Possible compact binary merger (NS/BH)
- Possible SGR
- Error-box of location overlay M31(D~770 kpc)
- See: arXiv:0711/1163, accepted by ApJ

Inspiral Search GRB070201

Inspiral search:

- Search for a modeled GW (post-Newtonian waveform)
- Parameters: $m_1 = [1.0, 3.0] M_{sol}$ $m_2 = [1.0, 40.0] M_{sol}$
- Cross-correlation between data and waveform (matched filtering)
- SNR thresholds: 5.5 in H1, 4.0 in H2

Results GRB070201

No gravitational wave detected

Inspiral search:

- Binary merger in M31 scenario excluded at >99% level
- Exclusion of merger at larger distances: see plot

S5 GRBs

Some statistics:

- *213 GRB observed electromagnetically during S5
 - ★ 30 short (8 with measured redshift)
 - * 182 long (58 with measured redshift)
- ★Longest: 900 sec, Shortest: 0.028 sec
- *Nearest: z=0.0331 (~150 Mpc), farthest: z=5.11

Summary & Outlook

- LIGO detectors:
 - Working at design sensitivity
 - enhanced LIGO (~2009), factor of 2 improvement
 - advanced LIGO (~2014), factor of 8 improvement
- GRB 070201: (arXiv:0711.1163v1)
 - No GW signal for merger in M31
 - Cannot exclude SGR in M31

⇒Future:

- Inspiral analyses on short GRB's during S5 underway
- Extend inspiral search to all GRBs with LIGO data available
- Include statistical analysis

Questions!

- News on progenitor theory?
- Subclasses for short GRB's?
- Reliable on-source window length?