

Searching for Periodic GW Signals in Space- and Ground-Based Detector Data

John T. Whelan

john.whelan@aei.mpg.de

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Potsdam

Rochester Institute of Technology CCRG Seminar 2008 March 12 G080072-00-Z

ヘロト ヘヨト ヘヨト

Outline

Searches for Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Observations & Detectors
- The Mock LISA Data Challenges

2 Searches for Periodic Gravitational Waves

- *F*-Statistic Search Technique
- AEI *F*-Statistic Search for White Dwarf Binaries
- New Cross-Correlation Method for Periodic GW Searches

Outline

Searches for Gravitational Waves Periodic GW Searches Conclusions

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

< ロ > < 同 > < 三 >

Searches for Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Observations & Detectors
- The Mock LISA Data Challenges

2 Searches for Periodic Gravitational Waves

- *F*-Statistic Search Technique
- AEI *F*-Statistic Search for White Dwarf Binaries
- New Cross-Correlation Method for Periodic GW Searches

Motivation

Searches for Gravitational Waves Periodic GW Searches Conclusions

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

- In Newtonian gravity, force dep on distance btwn objects
- If massive object suddenly moved, grav field at a distance would change instantaneously
- In relativity, no signal can travel faster than light
 - \longrightarrow time-dep grav fields must propagate like light waves

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

< 🗇 >

э

э

Gravity as Geometry

Minkowski Spacetime:

$$ds^{2} = -(dx^{0})^{2} + (dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2}$$
$$= \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix}^{\text{tr}} \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix} = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

• General Spacetime:

$$ds^{2} = \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix}^{\mathrm{tr}} \begin{pmatrix} g_{00} & g_{01} & g_{02} & g_{03} \\ g_{10} & g_{11} & g_{12} & g_{13} \\ g_{20} & g_{21} & g_{22} & g_{23} \\ g_{30} & g_{31} & g_{32} & g_{33} \end{pmatrix} \begin{pmatrix} dx^{0} \\ dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix} = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

ヘロト ヘ戸ト ヘヨト ヘヨト

Gravitational Wave as Metric Perturbation

 For GW detection, spin-2 "graviton tensor" h_{μν} is difference btwn actual metric g_{μν} & flat metric η_{μν}:

$$g_{\mu
u}=\eta_{\mu
u}+h_{\mu
u}$$

(*h*_{μν} "small" in weak-field regime, e.g. for GW detection)
E.g. Plane wave propagating in *z* direction

$$\{h_{\mu
u}\} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} e^{i2\pi f(z-t)}$$

 h_+ and h_{\times} are amplitudes of "plus" and "cross" pol states.

$$\overset{\leftrightarrow}{h} = \left[h_{+}\overset{\leftrightarrow}{e}_{+} + \frac{h_{\times}\overset{\leftrightarrow}{e}_{\times}\right] e^{i2\pi f(\hat{k}\cdot\vec{r}-t)}$$

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

ヘロト 人間 とくほとくほとう

ъ

Effects of Gravitational Wave

Fluctuating geom changes distances btwn particles in free-fall:

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

Gravitational Wave Generation

- Generated by moving/oscillating mass distribution
- Lowest multipole is quadrupole
- Classic example: orbiting binary system

(e.g., Binary Pulsar 1913+16

- Observed energy loss agrees w/GW prediction)
- Periodic signals with slow freq evolution arise from
 - Early stages of binary evolution
 - Rapidly rotating non-axisymmetric neutron stars

Outline

Searches for Gravitational Waves Periodic GW Searches Conclusions

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

< ロ > < 同 > < 三 >

Searches for Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Observations & Detectors
- The Mock LISA Data Challenges

2 Searches for Periodic Gravitational Waves

- *F*-Statistic Search Technique
- AEI *F*-Statistic Search for White Dwarf Binaries
- New Cross-Correlation Method for Periodic GW Searches

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

Measuring GWs w/Laser Interferometry

Interferometry: Measure GW-induced distance changes

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

Rogues' Gallery of Ground-Based Interferometers

LIGO Hanford (Wash.)

GEO-600 (Germany)

LIGO Livingston (La.)

イロト イポト イヨト イヨト

Virgo (Italy)

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

イロト イポト イヨト イヨト

LISA: Interferometry in Space

- Planned Joint NASA-ESA Mission: to launch 2018 or later
- 3 spacecraft will orbit sun in 5 mio km & track each other w/lasers
- Laser phase data combined to simulate IFO: "Time-Delay Interferometry" (TDI)

Credits: NASA/JPL; MPI for Gravitational Physics (AEI)/Einstein Online

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

ъ

Differences Between LISA and LIGO

• Diff noise sources & sizes mean diff frequency ranges

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

Differences Between LISA and LIGO

- Diff noise sources & sizes mean diff frequency ranges
- LIGO data noise-dominated; can seek one source at a time LISA data will contain many strong sources;
 - \longrightarrow must worry about signal extraction
- LISA to observe GWs w/λ comparable to arm length
 → At higher frequencies, simple IFO picture breaks down
 & response depends on propagation direction

$$\widetilde{X}(f) = rac{\widetilde{h}(f)}{R(f)} = rac{\widetilde{h}(f): \widetilde{d}(f,\widehat{k})}{R(f)}$$

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

LISA Response

- Arm lens L_1 , L_2 , L_3 all $\approx L = 5$ million km vary due to GW & orbit
- TDI vars *X*, *Y*, *Z* comb links btwn sc to cancel laser noise
- Convert into "strains" $\widetilde{h}^{X}(f) = R(f)\widetilde{X}(f) = \overrightarrow{h}(f): \overrightarrow{d}^{X}(f, \widehat{k})$ where in long- λ limit $\overrightarrow{d} \approx \frac{1}{2}(\widehat{n}_{2} \otimes \widehat{n}_{2} - \widehat{n}_{3} \otimes \widehat{n}_{3})$ (etc. for Y & Z)

Outline

Searches for Gravitational Waves Periodic GW Searches Conclusions Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

< ロ > < 同 > < 三 >

Searches for Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Observations & Detectors
- The Mock LISA Data Challenges

2 Searches for Periodic Gravitational Waves

- *F*-Statistic Search Technique
- AEI *F*-Statistic Search for White Dwarf Binaries
- New Cross-Correlation Method for Periodic GW Searches

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

Mock LISA Data Challenges

- LISA data analysis presents unusual challenges; Need to coördinate searches for different types of signals Need plan worked out before LISA flies
- LISA International Science Team (LIST) has organized MLDCs to build community expertise Extract simulated signals from simulated LISA noise

Challenge	Dates Results Presented		
MLDC1	2006 Jun-Dec	GWDAW 11, Potsdam	
MLDC2	2007 Jan-Jun	GR 18 / Amaldi 7, Sydney	
MLDC1B	2007 Jul-Dec	GWDAW 12, Boston	
MLDC3	2008 Jan-Dec	GWDAW 13, Arecibo	

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

< 🗇 🕨

First Mock LISA Data Challenge

- MLDC1 Results submitted December 2006
- MLDC1B Results submitted December 2007
- Data sets:
 - Challenge 1.1: White Dwarf Binaries: Periodic Sources
 - Challenge 1.2: Super-Massive Black Hole Inspirals
 - Challenge 1.3: Extreme Mass Ratio Inspirals (deadline postponed until MLDC2)
- Entries submitted by ten groups each time
- AEI group of Reinhard Prix & JTW searched for WD binaries w/*F*-statistic method w/Deepak Khurana for MLDC1B

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

▲ @ ▶ ▲ ⊇ ▶

Second Mock LISA Data Challenge

- Results submitted June 2007
- Data sets:
 - Challenge 1.3: Extreme Mass Ratio Inspirals
 - Challenge 2.1: Galactic Binaries (30 Million)
 - Challenge 2.2: "Whole Enchilada": Galaxy + EMRIs + BHB
- Entries submitted by thirteen groups
- AEI group of Reinhard Prix & JTW searched for WD binaries w/*F*-statistic method (improved pipeline to distinguish sources)

Gravitational Waves Gravitational-Wave Observations & Detectors The Mock LISA Data Challenges

Third Mock LISA Data Challenge

- Results due December 2008
- Data sets:
 - Challenge 3.1: Galactic WDB w/frequency evolution
 - Challenge 3.2: SMBH binary + galaxy
 - Challenge 3.3: EMRIs
 - Challenge 3.4: Bursts
 - Challenge 3.5: Stochastic Background

Outline

Searches for Gravitational Waves Periodic GW Searches Conclusions

F-Stat Search Technique AEI *F*-Statistic Search for White Dwarf Binaries New Cross-Corr Method

< ロ > < 同 > < 三 >

Searches for Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Observations & Detectors
- The Mock LISA Data Challenges

2 Searches for Periodic Gravitational Waves

- *F*-Statistic Search Technique
- AEI *F*-Statistic Search for White Dwarf Binaries
- New Cross-Correlation Method for Periodic GW Searches

F-Stat Search Technique AEI F-Statistic Search for White Dwarf Binaries New Cross-Corr Method

Periodic Gravitational Waves

(Quasi-)periodic GW @ solar-system barycenter (SSB):

 $\overset{\leftrightarrow}{h} = \mathbf{A}_{+} \cos[\phi_{0} + \phi(\tau)] \overset{\leftrightarrow}{\mathbf{e}}_{+}(\beta, \lambda, \psi) + \mathbf{A}_{\times} \sin[\phi_{0} + \phi(\tau)] \overset{\leftrightarrow}{\mathbf{e}}_{\times}(\beta, \lambda, \psi)$

F-Stat Search Technique AEI *F*-Statistic Search for White Dwarf Binaries New Cross-Corr Method

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Periodic Gravitational Waves

(Quasi-)periodic GW @ solar-system barycenter (SSB):

 $\vec{h} = \mathbf{A}_{+} \cos[\phi_{0} + \phi(\tau)] \, \vec{\mathbf{e}}_{+}(\beta, \lambda, \psi) + \mathbf{A}_{\times} \sin[\phi_{0} + \phi(\tau)] \, \vec{\mathbf{e}}_{\times}(\beta, \lambda, \psi)$

- SSB time τ related to detector time t by doppler shift, which depends on sky position {β, λ}
- $\phi(\tau)$ from frequency & derivs $\{f, \dot{f}, \ldots\}$
- Doppler params θ = {β, λ, f, f, ...}
 will determine signal templates

F-Stat Search Technique AEI *F*-Statistic Search for White Dwarf Binaries New Cross-Corr Method

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Periodic Gravitational Waves

(Quasi-)periodic GW @ solar-system barycenter (SSB):

 $\vec{h} = \mathbf{A}_{+} \cos[\phi_{0} + \phi(\tau)] \, \vec{\mathbf{e}}_{+}(\beta, \lambda, \psi) + \mathbf{A}_{\times} \sin[\phi_{0} + \phi(\tau)] \, \vec{\mathbf{e}}_{\times}(\beta, \lambda, \psi)$

 $\{ \vec{e}_{+,\times} \}$ is pol basis \perp prop direction Constructed rel to source (e.g., orbital plane or NS ang mom) Related to fiducial basis $\{ \vec{\varepsilon}_{+,\times} \}$ (from ecliptic or equator) by rotation

 $\begin{aligned} & \overleftrightarrow{\boldsymbol{e}}_{+}(\beta,\lambda,\psi) = \overleftrightarrow{\varepsilon}_{+}(\beta,\lambda) \cos 2\psi + \overleftrightarrow{\varepsilon}_{\times}(\beta,\lambda) \sin 2\psi \\ & \overleftrightarrow{\boldsymbol{e}}_{\times}(\beta,\lambda,\psi) = -\overleftrightarrow{\varepsilon}_{+}(\beta,\lambda) \sin 2\psi + \overleftrightarrow{\varepsilon}_{\times}(\beta,\lambda) \cos 2\psi \end{aligned}$

F-Stat Search Technique AEI F-Statistic Search for White Dwarf Binaries New Cross-Corr Method

ヘロト ヘ戸ト ヘヨト ヘヨト

Periodic Gravitational Waves

(Quasi-)periodic GW @ solar-system barycenter (SSB):

 $\vec{h} = \mathbf{A}_{+} \cos[\phi_{0} + \phi(\tau)] \, \vec{\mathbf{e}}_{+}(\beta, \lambda, \psi) + \mathbf{A}_{\times} \sin[\phi_{0} + \phi(\tau)] \, \vec{\mathbf{e}}_{\times}(\beta, \lambda, \psi)$

Allows factorization ($\sum_{\mu=1}^{4}$ implicit) $\dot{\vec{h}} = \mathcal{A}^{\mu} \dot{\vec{h}}_{\mu}(\tau; \theta)$ where

$$\begin{aligned} \mathcal{A}^{1} &= \mathcal{A}_{+} \cos \phi_{0} \cos 2\psi - \mathcal{A}_{\times} \sin \phi_{0} \sin 2\psi \\ \mathcal{A}^{2} &= \mathcal{A}_{+} \cos \phi_{0} \sin 2\psi + \mathcal{A}_{\times} \sin \phi_{0} \cos 2\psi \\ \mathcal{A}^{3} &= -\mathcal{A}_{+} \sin \phi_{0} \cos 2\psi - \mathcal{A}_{\times} \cos \phi_{0} \sin 2\psi \\ \mathcal{A}^{4} &= -\mathcal{A}_{+} \sin \phi_{0} \sin 2\psi + \mathcal{A}_{\times} \cos \phi_{0} \cos 2\psi \end{aligned}$$

and

$$\begin{split} & \overleftrightarrow{h}_{1}(\tau) = \overleftrightarrow{\varepsilon}_{+} \cos \phi(\tau) \,, \qquad \overleftrightarrow{h}_{2}(\tau) = \overleftrightarrow{\varepsilon}_{\times} \cos \phi(\tau) \,, \\ & \overleftrightarrow{h}_{3}(\tau) = \overleftrightarrow{\varepsilon}_{+} \sin \phi(\tau) \,, \qquad \overleftrightarrow{h}_{4}(\tau) = \overleftrightarrow{\varepsilon}_{\times} \sin \phi(\tau) \,. \end{split}$$

F-Stat Search Technique AEI *F*-Statistic Search for White Dwarf Binaries New Cross-Corr Method

\mathcal{F} -Stat Search for Periodic GWs (JKS 1998)

• Measured strain (= noise + signal) is

 $\begin{aligned} \mathbf{x}(t; \mathcal{A}, \theta) &= n(t) + \mathcal{A}^{\mu} h_{\mu}(t; \theta) \\ n(t) \& h_{\mu}(t; \theta) &= \stackrel{\frown}{h}_{\mu} : \stackrel{\frown}{d} \text{ depend on detector, } \mathcal{A} \text{ does not} \end{aligned}$

Jaranowski, Królak, Schutz 1998: Log-likelihood

$$-\int \frac{|\widetilde{x}(f) - \mathcal{A}^{\mu}\widetilde{h}_{\mu}(f)|^{2}}{S_{n}(f)} df + \int \frac{|\widetilde{x}(f)|^{2}}{S_{n}(f)} df = -\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + 2\mathcal{A}^{\mu}x_{\mu}$$

quadratic in \mathcal{A} ; maximize analytically

- log-likelihood maximized by amplitude parameters $\mathcal{A}^{\mu}_{MLF} = \mathcal{M}^{\mu\nu} \mathbf{x}_{\nu}$; max value is $2\mathcal{F} = \mathbf{x}_{\mu} \mathcal{M}^{\mu\nu} \mathbf{x}_{\nu}$
- \mathcal{F} -stat search technique:
 - Make a grid of doppler params θ (freq & sky pos)
 - For each choice of θ , calculate 2 \mathcal{F} from data
 - $\bullet\,$ High values are candidate sources w/amp params \mathcal{A}_{MLE}

Currently the basis of LIGO searches for spinning neutron stars

Outline

Searches for Gravitational Waves Periodic GW Searches Conclusions *F*-Stat Search Technique
AEI *F*-Statistic Search for White Dwarf Binaries
New Cross-Corr Method

< ロ > < 同 > < 三 >

Searches for Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Observations & Detectors
- The Mock LISA Data Challenges

2 Searches for Periodic Gravitational Waves

- *F*-Statistic Search Technique
- AEI *F*-Statistic Search for White Dwarf Binaries
- New Cross-Correlation Method for Periodic GW Searches

F-Stat Search Technique
AEI *F*-Statistic Search for White Dwarf Binaries
New Cross-Corr Method

Prix/Whelan/Khurana MLDC Searches

We used open source LAL & LALAPPS (LIGO) code, with slight LISA mods

- MLDC1, Prix & JTW, CQG 24, S639 (2007) (arXiv:0704.2983)
- MLDC2, Amaldi Poster LIGO-G070462-00-Z
- MLDC1B, GWDAW Poster LIGO-G070818-01-Z

F-Stat Search Technique
AEI *F*-Statistic Search for White Dwarf Binaries
New Cross-Corr Method

Challenge 1(B).1.1: Isolated Binaries

Good sky position even w/long-wavelength response Rigid adiabatic response needed to get amp_params

John T. Whelan john.whelan@aei.mpg.de Periodic GW Searches, G080072-00-Z

F-Stat Search Technique
AEI *F*-Statistic Search for White Dwarf Binaries
New Cross-Corr Method

Challenge 1(B).1.2: Verification Binaries

25 verification binaries w/known dop params; amp params well fit if RA response used.

F-Stat Search Technique
AEI *F*-Statistic Search for White Dwarf Binaries
New Cross-Corr Method

Galactic Binaries Injected in MLDC2

Challenge 2.1 has 26 million galactic WD binaries, of which 59401 designated as "bright" sources

F-Stat Search Technique
AEI *F*-Statistic Search for White Dwarf Binaries
New Cross-Corr Method

< 🗇 >

Secondary Maxima in Doppler Parameter Space

True signals identified by coïncidence btwn TDI vars

F-Stat Search Technique AEI F-Statistic Search for White Dwarf Binaries New Cross-Corr Method

Pipeline for Prix/Whelan/Khurana MLDC Searches

John T. Whelan john.whelan@aei.mpg.de Periodic GW Searches, G080072-00-Z

F-Stat Search Technique
AEI *F*-Statistic Search for White Dwarf Binaries
New Cross-Corr Method

Overview of Galactic Signals Recovered (LW)

Found many signals, but still missed some bright ones (especially at higher *f*), using long-wavelength response.

F-Stat Search Technique
AEI *F*-Statistic Search for White Dwarf Binaries
New Cross-Corr Method

Overview of Galactic Signals Recovered (RA)

Rigid adiabatic response improves signal recovery Loudest "misses" now found

John T. Whelan john.whelan@aei.mpg.de

Periodic GW Searches, G080072-00-Z

F-Stat Search Technique
AEI *F*-Statistic Search for White Dwarf Binaries
New Cross-Corr Method

Statistics of Galactic Signals Recovered

Focus on sources w/expected $2\mathcal{F}>40$

Freqs	Signals	Found		False	
11043	$ \mathcal{A} ^2 > 40)$	LW	RA	LW	RA
0–5 mHz	4443	982	1025	1	2
5–10 mHz	1966	652	822	5	3
10–15 mHz	163	68	133	1	0
15–20 mHz	7	2	7	0	0
20–27 mHz	3	0	2	2	0

Improved response improves efficiency

Future searches will subtract found bright signals & iterate

F-Stat Search Technique AEI F-Statistic Search for White Dwarf Binaries New Cross-Corr Method

→ < Ξ →</p>

Amplitude Accuracy w/LWL and RA

John T. Whelan john.whelan@aei.mpg.de Periodic GW Searches, G080072-00-Z

F-Stat Search Technique AEI F-Statistic Search for White Dwarf Binaries New Cross-Corr Method

くロト (過) (目) (日)

э

Cumulative Histograms: Err/Sigma

John T. Whelan john.whelan@aei.mpg.de Periodic GW Searches, G080072-00-Z

F-Stat Search Technique
AEI *F*-Statistic Search for White Dwarf Binaries
New Cross-Corr Method

Plans for the Future

- Crowder et al find \sim 10× as many galactic binaries We may need source subtraction to iteratively find "buried" signals
- Alternatives to coïncence condition to eliminate secondary maxima
- MLDC3 includes *f*; fully coherent template bank may become prohibitive; may need to use semi-coherent method

Outline

Searches for Gravitational Waves Periodic GW Searches Conclusions *F*-Stat Search Technique AEI *F*-Statistic Search for White Dwarf Binaries New Cross-Corr Method

(日)

Searches for Gravitational Waves

- Crash Course in Gravitational Wave Physics
- Gravitational-Wave Observations & Detectors
- The Mock LISA Data Challenges

Searches for Periodic Gravitational Waves

- *F*-Statistic Search Technique
- AEI *F*-Statistic Search for White Dwarf Binaries
- New Cross-Correlation Method for Periodic GW Searches

F-Stat Search Technique AEI *F*-Statistic Search for White Dwarf Binaries New Cross-Corr Method

ヘロト ヘアト ヘヨト

Cross-Correlation Search

- Full coherent search impossible on high-dim param space
- Semi-coherent methods incoherently combine short-time coherent searches
- Cross-correlation search designed for localized stochastic sources used to search for periodic signals from Low-Mass Xray Binaries (Ballmer, *CQG* 23, S179 (2006); LSC, *PRD* 76, 082003 (2007))
- Not ideal-neglects doppler-shift & long-term coherence
- Dhurandhar, Krishnan, Mukhopadhyay & JTW, arXiv:0712.1578 generalizes to include cross-correlation of different times from same detector; if all pairs included, approximates *F*-stat; can be customized to adjust coherence time.

Conclusions

- Similar tech to search for rotating NS in LIGO/Virgo/etc & WD binary in LISA
- Mock LISA Data Challenge Searches (Prix, JTW, Khurana)
 - *F*-statistic method to find doppler-shifted periodic signals applied to mock LISA data
 - Had to model LISA response beyond long- λ limit to get accurate amplitude param recovery
 - Weaker signals can be mistaken for secondary maxima partially overcome by coïncidence condition
 Probably need signal subtraction to go further
 - MLDC3 adds f dim to param space may need to use semi-coherent methods
- Cross-correlation technique proposed for LMXB searches (Dhurandhar, Krishnan, Mukhopadhyay, JTW)