

AdvLIGO Static Interferometer Simulation

Hiro Yamamoto, Caltech/LIGO

- AdvLIGO simulation tools
 - » Stationary, frequency domain and time domain
- Stationary Interferometer Simulation, SIS, basic
 - » Motivation
 - » physics
- SIS applications
 - » Stationary Michelson cavity
 - » Beam splitter Wedge angle effect
 - » Surface aberration

Advanced LIGO Interferometer Simulation Tools

model	Description	Applications	
Stationary Interferometer Simulation a.ka. FFT	Stationary field simulation with detailed optics	 Effect of realistic optics Finite size, surface aberration, thermal deformation Effect of realistic fields Diffraction, scattering, excitation by complex mirror motion 	
Opticle	Frequency domain simulation with optical springs and quantum noises	 Control system design Trade study of optical system design Noise analysis with full control systems 	
End to End model	Time domain simulation of opto- mechanical system with realistic controls	 Lock acquisition design and test Study of transient and stability issues Analysis of subsystems with strong correlations 	

SIS Basic Motivation

- AdvLIGO design tool
- Interferometer configuration trade study
- Effect of finite size optics
 - » BS, flat, wedge angle, baffle, etc
- Tolerance of radius of curvature of COC mirrors
- Surface aberration
 - » Requirements of the surface quality to satisfy the limit of loss in arm, total of 75ppm
- Subsystem performance simulation
 - » TCS, ISC, COC, AOC, ...
- Parametric instability
 - » highly distorted field, hard to be expressed by simple functions

G080084-00-E

SIS Basic Ingredient Requirements

Details of Optics

- » surface map, size, flat, wedge angle, etc
- Flexibility
 - » Various optics configurations
 - » Now, only FP and couple cavity with BS
- Physics
 - » Realistic locking by using error signals
 - » Signal sideband generation
 - » Built-in thermal deformation function
- Analysis tool
 - » beam profiler
 - » mode analysis

SIS Basic Optics and fields

G080084-

SIS Basic Ingredients- 1

•Lock

Error signal = imag(CR*SB) ~ imag(CR * promptly reflected CR)

•Signal Sideband Generation : any periodic motion of mirror surface $E_{ref}(x, y, t) = \exp(2ik\delta(x, y) \cdot \sin(\Omega_{AF}t)) \cdot \exp(i\omega_0 t) \cdot E_{in}(x, y)$ $\approx \{\exp(i(\omega_0 + \Omega_{AF})t) - \exp(i(\omega_0 - \Omega_{AF})t)\} \cdot k\delta(x, y) \cdot E_{in}(x, y)$ $+ \exp(i\omega_0 t) \cdot E_{in}(x, y)$ $E_{in} \longrightarrow \delta(x, y)$

•Thermal deformation : Hello, Vinet Stored beam is used to calculate thermal effects

THERMOELASTIC(beamSize, Psubs, Pcoat [, T0])
THERMALPHASE(beamSize, Psubs, Pcoat [, T0])

G080084-00-E

LSC-Virgo meeting @ Caltech on March 20, 2008

Eref

SIS Basic Ingredients - 2

G080084-00-E

Using SIS to study wedge angle effect - 1

Beam profile going to ITM from BS

G080084-00-E

Using SIS to study wedge angle effect - 2

Using SIS to study mirror rms requirement

Diffraction effect in FP cavity

G080084-00-E

Diffraction effect in Stable Michelson cavity

G080084-00-E

Loss under different conditions

MMT aperture (cm) ੪	B	beam size on ITM (cm)	Coupled cavity	loss on MMT3 (ppm)
	2076 ¹	6cm	Y-arm + SRM(*)	330
26cm 021	6m + 3	6cm	X-arm + SRM(*)	600
28cm	207	6cm	Y-arm + SRM	140
26cm 02	91m	5.5cm (**)	Y-arm + SRM	47
26cm	1 + 21	5.5cm (**)	X-arm + SRM	60
(*) When a baffle is plac $\stackrel{\circ}{E}$ (**) <u>http://ilog.ligo-wa.c</u> $\stackrel{\circ}{E}$ and 6.2cm on ETM.	1971n	nt of ITMY, Y-arm+SF lu:7285/advligo/Test_N	RM configuration comes v Mass_Beam_Sizes, asymm	ery close to X-arm+SRM c netric case with 5.5cm on I

With the baffle size of Mike's choice - 214mm x 249mm - the beam going through a baffle is cut off by 250ppm. If the baffle size of 1cm larger in both direction (224mm x 259mm), the cutoff is 55ppm. The numbers in the above table were calculated without baffles.

G080084-00-E

Using SIS to study PI Signal generation by surface map

- Investigating a Parametric Instability
- SUFR project by Hans Bantilan, mentored by Bill Kells
 » G060385-00-Z
- Simulate a stationary field for a given acoustic mode, instead of using modal expansion, to calculate the overlapping integral
- Combined with Dennis' FEM package to calculate acoustic modes
- 9061 modes for f < 90KHz

What you need to run SIS

- gcc compiler + fftw library
- or use program on Caltech machine
- SIS manual T070039
- Patience to simulate stable cavity 2048 grids