

UNIVERSITY^{OF} BIRMINGHAM

Advanced LIGO UK Work Package 4 Update OSEMs and Electronics

Stuart Aston

(on behalf of the ALUK WP4 team) University of Birmingham

LSC / VIRGO Joint Meeting - Caltech 17th – 20th March 2008

G080088-00-K

OSEMs and Electronics

Presentation Overview

• B-OSEMs

Fabrication Status

UNIVERSITYOF

BIRMINGHAM

FRR/FDR Review

• Electronics

- Noise Prototype Status
 - Coil Drivers
 - Satellite Boxes
 - Electrostatic Drive
 - Violin Mode Dampers
- Full Production Plans
- Interferometric Sensor
 - Brief Discussion

• Summary

B-OSEM Fabrication Status

Noise Prototype deliverables:-

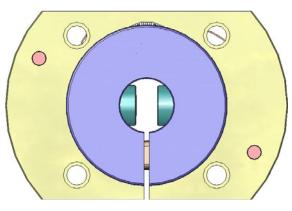
UNIVERSITYOF

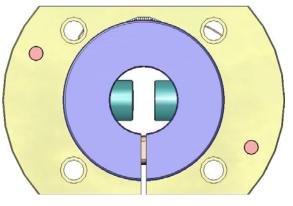
BIRMINGHAM

- ~50 units cleaned, baked, assembled, tested and shipped to US
- Employed in LASTI Quad, OMC, and tip/tilt suspensions
- 31 units remaining to be delivered
- Full production (654 units inc spares) will commence imminently (following outcome of review) for a duration of ~12 months

Pre-assembly bake-out oven

Clean-room assembly suite

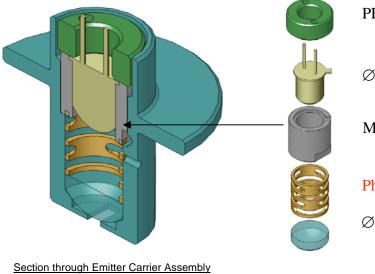

Assembled BOSEMS at testing station



BIRMINGHAM

B-OSEM Fabrication Readiness Review (FRR) / FDR

- Review teleconference conducted on 29th February 2008
- Received final panel report 18th March 2008, L080022-00-E
- Immediately addressed key fabrication issues raised
- For example, coilformer / magnet / flag clearance:-
 - There is margin in the design to increase the aperture diameter and improve visibility when carrying out installation and alignment


Existing \emptyset 0.5" [12.7mm] apertureRevised \emptyset 0.625" [15.9mm] aperture \Rightarrow Aperture diameter increase of 0.125" [3.2mm] available

BIRMINGHAM

B-OSEM Fabrication Readiness Review (FRR) / FDR

- Sensitivity at $1Hz = 3 \times 10^{-10} \text{m}/\sqrt{Hz}$, at $10Hz = 1 \times 10^{-10} \text{m}/\sqrt{Hz}$
- Additional low frequency noise:-
 - Meets sensitivity requirement at 1Hz
 - Potentially an improvement of factor ~3 available
 - Determined by thermal environment of IRLED

PEEK Retainer

Ø 0.185" [Ø 4.7mm] OP232

MACOR Sleeve

MACOR, k = 1.46 W/m.K Alumina, k = 35 W/m.K

Phosphor Bronze Spring Clip

Ø 0.248" [Ø 6.3mm] Lens

Emitter Part Explosion

OSEMs and Electronics

Noise Prototype Electronics Status

Satellite Boxes:-

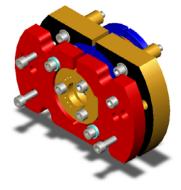
UNIVERSITY

BIRMINGHAM

- ➢ 5 Units (20 Channels)
- Coil Drivers:-
 - Top Mass, 3 Units (12 Channels)
 - Upper Intermediate Mass, 1 Unit (4 Channels)
 - Penultimate Mass, 1 Unit (4 Channels)

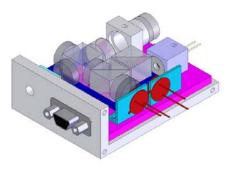
- > n.b. sufficient channels to support the Quad suspension tests at LASTI
- Units are undergoing further testing at Caltech (J. Heefner et al)
- Plan to install electronics at LASTI in 2nd week of April 2008

OSEMs and Electronics


OSEM Development

UNIVERSITYOF

BIRMINGHAM


Initial LIGO (OSEM)

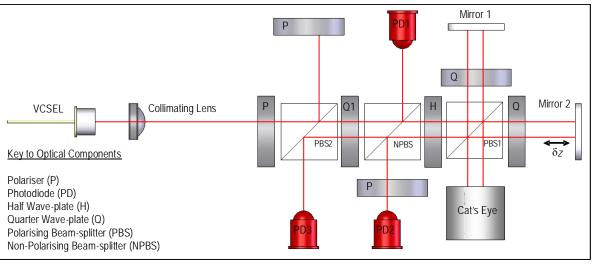
Advanced LIGO Controls Prototype (Hybrid OSEM)

Advanced LIGO Noise Prototype (B-OSEM)

Advanced / Ultimate LIGO (Interferometric OSEM / EUCLID)

BIRMINGHA

Interferometric OSEM Development (EUCLID)


- For Advanced LIGO the approach of using B-OSEMs plus eddycurrent damping (ECD) for the quad suspensions is preferred over interferometric techniques
- However, R&D on the interferometric sensor has continued, as a possible back-up solution in the (unlikely) event that the B-OSEM and ECD solution is later found to be inadequate
- Potentially other locations where interferometric sensing may be advantageous (wherever you need high sensitivity and an improved operating range over optical-shadow or capacitive sensors)
- This has led us to develop a compact interferometer EUCLID

BIRMINGHAM

Design Motivation

- To ensure good <u>low frequency stability</u> we needed to avoid active parts that can age, thermally expand, generate heat, exhibit hysteresis, e.g. piezo's etc. This naturally led to a Homodyne Interferometer
- Required to be <u>compact</u> and <u>robust</u> against misalignment

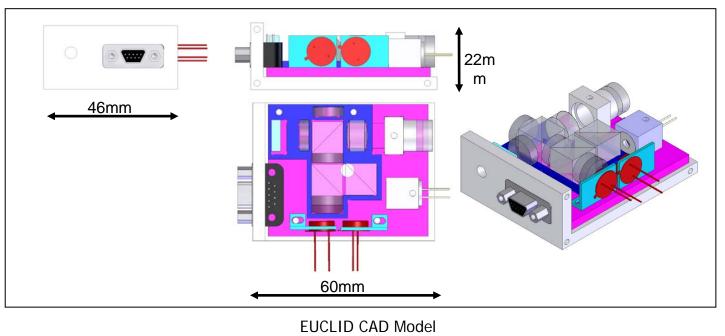
Optical Layout ^[1]

^[1] C. C. Speake and S. M. Aston. "An interferometric sensor for satellite drag-free control". IOP, Class. Quantum Grav. 22 (2005) S269–S277.

BIRMINGHAM

Fringe Interpolation Method

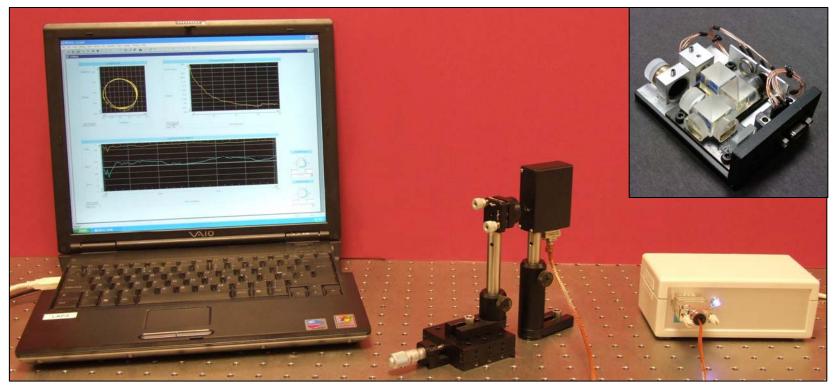
- > Fringe intensities I_2 , I_3 are 90° out of phase
- Motion of target mirror generates a circular Lissajous figure with I₂, I₃ plotted as v_x, v_y



BIRMINGHAM

Preliminary EUCLID Specifications

- > Resolution of 1 pm/ \sqrt{Hz} over a large working range > 5mm
- Compact dimensions of 60mm x 46mm x 22mm
- Robust against misalignment +/- 1.5°
- Constructed with LIGO UHV compliance in mind



Prototype EUCLID

- Recently fabricated, assembled and aligned prototype
- Characterisation is ongoing

UNIVERSITYOF

BIRMINGHAM

Prototype and support equipment. (Inset: with cover removed)

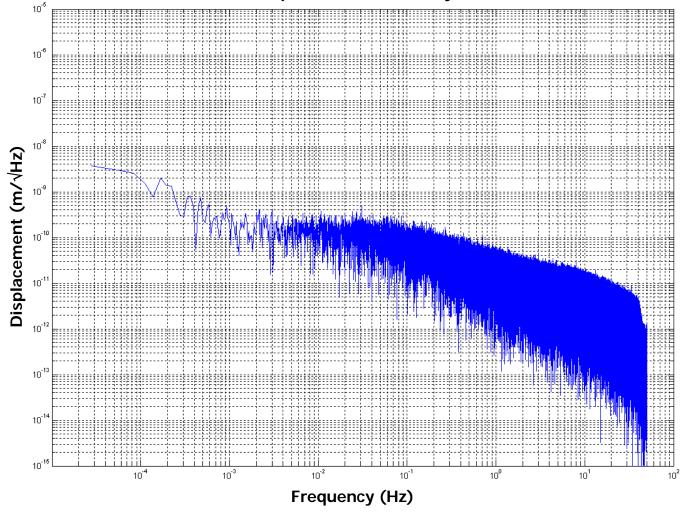
BIRMINGHA

To Summarise

- Over the next 4-6 weeks we shall complete all Noise Prototype B-OSEM deliveries. Our goal is to ensure these remaining units are delivered as close to the "final-article" configuration as is feasible and the delivery schedule allows
- Feedback from the FRR/FDR has been addressed with models, drawings and documentation being updated. Drawings to be signed-off and released under DCN. Orders to be placed with contractors for full production imminently
- Feedback on the performance and production issues associated with the coil drivers is being provided by the US team. This will be incorporated into the UK's next pre-production cycle (Summer 2008)

BIRMINGHAM

OSEMs and Electronics


Thank You

BIRMINGHAM

OSEMs and Electronics

Displacement Sensitivity

