

# Gold Barrel Coatings-Our Savior

Phil Willems LIGO/Caltech

LSC/Virgo Meeting, Caltech 3/20/2008



## What Is a Gold Barrel Coating?

- The gold coating covers the circumference of the test mass, including the flats.
  Gaps are left for the silicatebonded ear and for the ring heater. No gold on either face.
- Gold coatings are fragile, and do not adhere well to glass Therefore:
  - » An overlayer of silica improves scratch resistance
  - » An underlayer of nickel or -Inconel provides adhesion





## Benefits for TCS

TCS heats the compensation plate to correct thermal aberration in the ITM. The CP sits directly behind the ITM and so radiates ~40% of its waste heat onto the ITM.





The heat falling on the ITM AR face is nearly uniform, but heat flow out the barrel creates a radial temperature gradient & thermal lens.

The resulting thermal lens in the ITM reduces the CP effect ~40%, alters the thermal lens profile, and increases the thermal time constant of the system.

LIGO R&D





## Benefits to TCS

- Insulating the barrel forces the heat to flow axially- no thermal lens along the IFO beam axis.
- Test mass flexure is still present, but ignorably small.





## **Thermal Noise**

- Gold is not a low-loss material:
  - » Intrinsic Q~500-1000
  - » Q of commercial gold coating (with Ti underlayer and SiO<sub>2</sub> overlayer)=106+-23 (measured by Andri Gretarsson)
  - » Thermoelastic damping peak is of similar magnitude but at MHz frequency and thus inconsequential
- But on the test mass barrel a little gold won't hurt the thermal noise:
  - » Calculations of a 0.1 micron layer with Q as measured by Gretarsson show only ~1% increase in thermal noise (Coyne and Willems, LIGO-T080003-03, in preparation)
  - » Relatively small effect is due to dominant influence of HR coating on thermal noise



# Reducing Test Mass Q, Reducing Parametric Instability

#### Parametric gain R:

$$R = \pm \frac{4PQ_{m}Q_{1}}{mcL\omega_{m}^{2}}B$$

Reductions in Q give proportional reductions in R, or equivalently increases in power P without instability

Any reduction in acoustic Q we can get without increasing thermal noise is a prudent strategy for dealing with potential parametric instability

Q's of mirror plus HR and gold barrel coatings

30000

 $f_{m}$  [Hz]

40000

Calculations by Slawek Gras using 1 micron gold coating

IGO R





# Stray Charge Mitigation

- Rai's favorite idea- cover mirror with (barely) conductive coating to bleed charge from mirror
- Rai's second favorite idea- force electric fields of stray charges to terminate on a conducting cylinder attached to the mirror (LIGO-T960137-00-E)
- This proposal- let the conducting layer/cylinder be slightly *inside* the mirror



## Discharging the Conducting Cylinder





# "Discharging" the Conducting Sphere with Insulating Overlayer





# Stray Dipoles Are Very Preferable to Stray Charges

- Electric field falls as 1/r³ instead of 1/r², so much poorer coupling to nearby charges and ground planes
- Migration of surface charges becomes effectively migration of surface dipoles
- Stray charges could possibly become pinned in their local surface potential wells due to attraction by nearby image charges (image potential is of order 1eV)



### Can We Do This on the Mirror Face?

- Now absorption becomes an issue. A simple model:
  - » Absorption in a conductive layer goes as  $I(z) = I_0 \exp \left\{ -\sqrt{2\mu\omega\sigma}z \right\}$
  - » For 1ppm absorption require  $\sqrt{2\mu\omega\sigma}d\approx10^{-6}$
  - » Surface conductivity of a conductive layer of thickness d is  $\sigma d$
  - » Ratio goes as  $\sigma d / \sqrt{\sigma} d = \sqrt{\sigma}$  so we want large  $\sigma$  and small d
  - » Choosing  $d=1\mathrm{nm}$  sets  $\sigma=2\times10^{-4}\mathrm{S/m}$
  - » Surface resistivity is then  $1/\sigma d = 5 \times 10^{12} \Omega/\text{square}$