Coating Discussion

Gregg Harry

LIGO - MIT

March 2008 LSC/Virgo Meeting March 19, 2008

LIGO

Coating Discussion Topics

- Future of Mexican Hat Experiment
- Advanced LIGO Coating Design
 - Optimization
 - Second Wavelength Transmission

Next Generation Research

- Coating Runs and Schedule
- ♣ Funding Plan
- Measurements
- Samples
- Scatter

Advanced LIGO Coating

- Silica mechanical loss
 - Reconcile HWS and Glasgow numbers
 - $\Rightarrow \phi$ appears to be a few x 10⁻⁵
 - ⇒ Optimized design for low thermal noise
 - ⇒ Transmittivity at all wavelengths
- What issues remain?

Next Generation Coating Conservative Approach

- Work with materials/techniques we are familiar with
 - Silica: need good φ for Adv LIGO, cheap and easy to coat, interesting behavior with annealing, good loss theory
 - Titania tantala silica: All three work well alone and together, can fine tune Y (si) and n (ti) and φ (ta)
 - Neon as ion: argon to xenon made ϕ worse so try lighter ion, material structure known to depend on ion
 - Secondary ion beam deposition : clear differences with different masks, known to effect material structure
- Advantages not much theoretical guidance so stays with what we know, vendor familiarity, likely cheaper, results quicker, can buy time for modeling and theory to advance
- Disadvantages probably won't make big gains in performance, limited theoretical input, might learn more about causes of loss from new materials

Next Generation Coating Aggressive Approach

- Work with new materials and techniques
 - Alumina: especially as dopant, optically acceptable
 - Cerium oxide (and other amorphous oxides): transmissive with low absorption
 - Lanthanum: dopant, used with titania
 - Fluorides: used for IR coatings, usually low stress, low index
 - Selenides: high index, low stress
 - Magnetron sputtering: improves uniformity, depresses crystal growth
 - B, N (other small atoms) as dopants: improves glassiness
 - Very thin layers: possibly less mechanically lossy
- Advantages more likely to find big improvements (?), learn more about causes of loss from studying more materials, drawn on X-ray experience, new techniques since initial LIGO
- Disadvantages more likely to find nothing, possibly more expensive, no theoretical guidance

Research Coating Runs - Conservative

- Approach 2 Advanced LIGO runs (silica, bubbles), 2 follow up runs (SIBB, si-ti), 2 new ideas drawing from previous experience (ti-ta-si, neon)
- March MLD, 2 silica runs. 0.5 micron on silica cantilever, 2 microns on silica disks
- April CSIRO, trinary alloy of titania/tantala/silica
- May ATF, neon as bombardment ion for tantala/silica
- June JDSU, secondary ion beam bombardment with oxygen of titania-doped tantala/silica – MLD, follow up runs (silica
- July REO, silica doped titania CSIRO, follow up runs
- August LMA, AdvLIGO development run on either uniformity or bubbles – ATF, follow up runs

Research Coating Runs - Aggressive

- Philosophy 2 Advanced LIGO runs (silica, bubbles), 2 new ideas with some tie to experience (oxide, alumina dopant), 2 radically new ideas (fluoride, magnetron)
- March MLD, 2 silica runs. 0.5 micron on silica cantilever, 2 microns on silica disks
- April CISRO, new oxide (Z, Ce, etc)
- May ATF, alumina doped titania
- June JDSU, fluoride MLD, follow up runs
- July REO, magnetron sputtering (as available) CSIRO, follow up runs on new oxide
- August LMA, AdvLIGO development run on either uniformity or bubbles – ATF, follow up runs with alumina or other dopant

LIGO

Payment System

- * Multiple groups contribute to cost of coating research
- The One or small groups pay for each coating run
- March: MLD Syracuse and HWS
- April: CSIRO LIGO MIT
- May: ATF Stanford
- June: JDSU LIGO Caltech
 - MLD ERAU , Florida, and Southern
- July: REO Glasgow
 - CSIRO TBD
- August: LMA Caltech AdvLIGO funds
 - ATF- TBD

LIGO

Measurements

Mechanical Loss	HWS, ERAU, MIT	Direct Thermal Noise	TNI - Caltech
Cryogenic Q	Glasgow, Perugia	Index of Refraction	Vendors
Absorption	Stanford, Vendors, Caltech	Young's Modulus	Glasgow, Vendors, Ole Miss, MIT
dn/dT	ERAU, Stanford?	Structure and Contaminants	Glasgow, JDSU, Southern
Scatter	Syracuse, Caltech, ERAU	High Power Effects	Florida, UWA, Caltech
Transmission	Caltech, vendors	Non-Gaussian Noise	MSU
Thermoelastic Parameters	TNI – Caltech	???	???

Samples

- Five 1 in X 0.25 in
 - * Absorption Stanford
 - Scatter Syracuse
 - Thermoelastic parameters TNI
 - To Quarter at Ole Miss
 - o Young's Modulus Ole Miss
 - o Structure Southern
 - o Structure Glasgow
 - o Extra
 - ⇒ Extra
 - o Charging Trinity, MSU
 - o High Power Florida
 - o Young's modulus nanoindenter MIT, Glasgow

- Two 3 inch X 0.1 in
 - ¬ Q and dn/dT − ERAU
 - Region Q HWS, MIT
- Two silica cantilevers
 - Cryogenic Q Glasgow
- 4 in X 4 in TNI mirrors as needed
 - To Direct thermal noise TNI