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Outline of Talk

Introduction to gravitational waves: sources and 
detection

LIGO – current status

Introduction to Advanced LIGO

Advanced LIGO suspension design

Conclusion
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What Are Gravitational Waves?

gravitation = 
curvature of space-time

Einstein’s theory

gravitational waves = 
waves in curvature of 

space-time 
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Production of Gravitational Waves 
(GW)

Compare to EM waves:
» GW produced by 

acceleration of mass 
» GW travel at speed of 

light
BUT

» gravitational interactions 
are very weak 

» no dipole radiation due to 
momentum conservation, 
one sign of mass

To produce significant flux requires asymmetric 
accelerations of large masses, i.e.

Astrophysical Sources

Merger of two black holes 
(Image: MPI for Gravitational 

Physics/W.Benger-ZIB) 
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Evidence for Gravitational Waves: 
Radio Observations of Binary Pulsar PSR1913+16

Orbit decaying, with emission of 
gravitational waves                
(rate of decay ~3 mm per orbit, 
merger in ~300 million yrs)

(Taylor and Weisberg, Ap. J. 253, 1982)

Expected GW signal from 
binary coalescence

A highly relativistic binary pulsar was 
discovered in late 2003: merger in 85 
Myrs (much shorter than other known 
systems)

Statistics small – this observation 
increased merger rate estimate by 
order of magnitude

Hulse and Taylor won Nobel Prize in 1993 
for discovery of this pulsar
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Gravitational Wave Sources

Bursts
» catastrophic stellar collapse to form black 

holes or neutron stars
» final inspiral and coalescence of neutron star 

or black hole binary systems – possibly 
associated with gamma ray bursts

Continuous
» pulsars (e.g. Crab)
(sign up for Einstein@home)
» low mass X-ray binaries                          (e.g. 

Sco-X1)

Stochastic Background
» random background “noise” associated with 

cosmological processes, e.g. inflation, cosmic 
strings…..

A New Astronomy

SN1987a

Credit: Henze, NASA
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Gravitational Wave Detection

Measure the time-dependent tidal strain, h, in 
space produced by the waves
Simplest detector – two free masses a distance L
apart whose separation is monitored

Magnitude of h
» Largest signals (very rare) h ~ 10-19

» For reasonable event rate h ~ 10-22 -10-23

Practical detector: Michelson Interferometer
» long baseline interferometry between freely 

suspended test masses

h
L
L
≈

Δ
L
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Advantages of Interferometer

Differential measurement – relaxes 
requirement on laser frequency stability
Matches to quadrupole nature of 
gravitational wave
Wideband operation
Sensitivity to strain scales with armlength: 
use long baseline, L
Further increase in sensitivity by folding 
light in the arms:

» Fabry Perot cavities      
» delay lines
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WORLDWIDE  GW 
INTERFEROMETER NETWORK
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LIGO Observatories

LIGO Hanford Observatory, WA

LIGO Livingston Observatory, LA

LIGO = Laser Interferometer 
Gravitational Wave Observatory

NSF funded. Designed and built by 
Caltech and MIT.
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Mitigation of Noise Sources

Photon shot noise
» 10 W Nd-YAG laser, Fabry Perot cavities in each 

arm,  power recycling mirror

Thermal Noise
» Use low loss materials
» Work away from resonances
» Thin suspension wires

Seismic Noise
» Passive isolation stack
» Pendulum suspension

Operate under high 
vacuum
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Evolution of LIGO Sensitivity

The S5 run – one year 
of triple coincidence 
data at design 
sensitivity - officially 
ended Oct 1st 2007. 

NSF review (Nov 07):
"The review panel 
congratulates LIGO for 
the wonderful progress 
made in the past year."

Best sensitivity: ~16 MPc for neutron 
star/neutron star inspiral range
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LIGO Status – Data Analysis

~30 papers published from S1-S5 science runs (and more to 
come!) presenting searches and upper limits on a variety of 
sources, plus numerous technical papers.

A couple of highlights:
» “Implications for the Origin of GRB 070201 from LIGO 

Observations”
(to appear in ApJ)

GRB sky position coincides with Andromeda Galaxy (M31). No 
GW candidate seen – we conclude it was not a binary neutron 
star merger in M31 (at 99% confidence level)

» “Upper limits on gravitational wave emission from 78 
radio pulsars”
(in Phys Rev D)
strain upper limit for the Crab pulsar is only 2.2 times greater 
than the fiducial spin-down limit (S4 result – S5 still to come) 
equatorial ellipticity of PSRJ2124-3358 is less than 10-6

MOU with Virgo in place – started data sharing in May 2007

Crab pulsar (combined 
Hubble/Chandra image)

*Credit: John Lanoue

M31*
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LIGO Status – 
Funding and Technical Advances

Good news! – the National Science Board announced 
approval for the construction of Advanced LIGO: 
» formal start of funding April 2008, budget $205M

Advanced LIGO is aimed at achieving a sensitivity at which 
at least several signals per month (perhaps per week) 
should be detected 
» Factor of 10 better sensitivity at ~100 Hz
» Wider bandwidth (extending down to ~10 Hz)

Current schedule for Advanced LIGO
» start of installation  - Dec 2010
» acceptance date (all 3 interferometers) - Autumn 2013

– followed shortly by a science run (low power, low frequency) 
assuming all goes well
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LIGO vs Advanced LIGO

Factor of 10 in 
sensitivity gives 
factor of 1000 in 
volume

slide from B Berger
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Interim Upgrade - Enhanced LIGO

Gap between end of S5 science run (Oct 07) and start of installation of 
Advanced LIGO

Enhanced LIGO: factor of ~ 2 improvement in sensitivity -> factor of ~ 8 in 
event rate
Incorporate some Advanced LIGO technology early: higher power laser (30 W) 
+ suitable input optics, new readout scheme, more thermal compensation
Increase probability of detection and gain experience of critical technologies-
reducing commissioning time for Advanced LIGO

Timeline adapted from LIGO: G060433
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Suspension Design for              
GW Detectors

long baseline laser interferometry between freely suspended test masses



20LIGO-G080272-00-R 

Suspension Design for GW Detectors continued

Fundamental requirements
» support the mirrors to minimise 

the effects of
– thermal noise in the 

suspensions
– seismic noise acting at the 

support point

Technical requirements
» allow a means to damp the low 

frequency suspension resonances  
(local control)

» allow a means to maintain arm 
lengths as required in the 
interferometer (global control) 
(without adding additional noise

Diagram from LIGO web site
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Advanced LIGO Suspensions Team
Wide membership from USA and UK*: 

LIGO Caltech: R. Abbott, H. Armandula, D. Coyne, C. Echols, J. Heefner, B. Kirsner, K. Mailand,               
N. Robertson (also Glasgow) – team leader, G. Scarborough, S. Waldman

LIGO Hanford Observatory: B. Bland, D. Cook, G. Moreno 

LIGO Livingston Observatory: D. Bridges, T. Fricke, M. Meyer, J. Romie, D. Sellers, G. Traylor

LIGO MIT: P. Fritschel, A. Heptonstall, R. Mittleman, B. Shapiro, N. Smith

University of Glasgow: M. Barton, C. Craig, L. Cunningham, A. Cumming, G. Hammond, K. Haughian, 
R. Kumar, J. Hough, R. Jones, I. Martin, S. Rowan,  K. Strain, K. Tokmakov C. Torrie, M. Van Veggel

Rutherford Appleton Laboratory: A. Brummitt, J. Greenhalgh, T. Hayler, J. O’Dell, I. Wilmut

University of Birmingham: S. Aston, R. Cutler, D. Lodhia, A. Vecchio

Strathclyde University: N. Lockerbie

*Significant UK involvement :  STFC (PPARC) awarded  ~$12M grant for development 
and fabrication of the quadruple suspensions for Advanced LIGO
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Thermal Noise

Thermally excited vibrations of pendulum 
and violin modes of suspensions and of 
mirror substrates + coatings

To minimise:
» use low loss (high quality factor, Q) 

materials for mirror and suspension  – 
gives low thermal noise level off 
resonance  -silica is a good choice

– loss angle ~ 2e-7, c.f. steel ~2e-4
– breaking stress can be larger than 

steel
» use thin, long fibres to reduce effect of 

losses from bending

Monolithic fused silica suspensions have been pioneered in the GEO 600 
detector: makes use of silicate bonding technique developed for Gravity Probe B
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GEO Triple Pendulum Suspension

Silica fibres welded 
to ears

Ears silicate 
bonded to masses
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Development of Suspensions for Advanced LIGO

Above: detail of ear bonded to silica mass and ribbon* (0.1 mm 
x 1 mm x 60 cm long) to be welded to ear

Left: lower 3 stages of suspension with fused silica ribbons* 
between penultimate mass and mirror (both fused silica) 

Below: ear bonded to silica disk for strength tests, and 
interferogram of ears indicating good flatness

Mirror: 40 kg silica mass

ear

ribbon

Diagrams from GEO-Glasgow group
*Recent design change – optimised dumbell-shaped  

fibres rather than optimised ribbons (less surface loss)
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Seismic Noise

Seismic noise limits sensitivity at low frequency  -
“seismic wall”
Typical seismic noise at “quiet” site at 10 Hz is ~ 
few x 10-10 m/ √ Hz
For Advanced LIGO more than 9 orders of 
magnitude of seismic isolation is required at 10 Hz 
– target is 10-19 m/ √ Hz
Solution - use multiple stages of isolation
Isolation required in vertical direction as well as 
horizontal due to cross-coupling effects
Ultimately Newtonian noise will limit low frequency 
performance: – LISA (interferometer in space) for 
low frequency detection Advantage of double 

over single pendulum, 
same overall length

Better 
isolation
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Seismic Isolation - From Initial to 
Advanced LIGO

active isolation 
platform              
(2 stages of 
isolation)

hydraulic external 
pre-isolator (HEPI)   
(1 stage of isolation)

quadruple pendulum (4 
stages of isolation)

4 layer passive 
stack

single pendulum

coarse & fine 
actuators
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Isolation from Quadruple Pendulum

Predicted longitudinal isolation ~ 3 x 10-7 at 10 Hz 
(from MATLAB model of suspension)

Red: without damping

Black: with active damping
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Optical Layout and Suspensions: 
Quadruples, Triples and Doubles
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Advanced LIGO Quadruple Pendulum Suspension

Four 
stages
Damping 
applied at 
top stage

(Lower support structure removed for clarity) Diagram/picture from Adv. LIGO SUS team

Schematic

Main chain plus parallel reaction 
chain for control actuation

First article test mass:  
34 cm diam x 20cm thick

Prototype gold-coated 
face-plate  for 
electrostatic actuation

Metal prototype under test at Caltech
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Current Status  for Suspensions

Example of measurements: upper set – 
experimental, lower set: from MATLAB model

Ongoing research and development
Program of tests on full-scale prototypes 

» Leading to final design and production 
(2008 - 2011: 47 major suspensions)



31LIGO-G080272-00-R 

Conclusion

Gravitational wave detection is recognised as a key research area: 
exciting times ahead!

Report from Interagency Working 
Group, Feb 2004
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