Macroscopic Tests of Quantum Mechanics Using Optical Coatings

Markus Aspelmeyer

Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Vienna

LIGO-G080296-00-R

single electron-spin detection via magnetic

resonance

Rugar et al., Nature 430, 329 (200-

zeptogram-scale mass sensitivity

Yang et al., NanoLett. 6, 583 (2006

zeptonewton-scale force sensing Mamin & Rugar, APL 79, 3358 (20

Rugar 2004

attometer-scale displacement sensing

Arcizet et al., Phys. Rev. Lett. 97, 133601(2006)

towards quantum limits of force- and displacement detection

"Lieber Schrödinger!

Du bist faktisch der einzige Mensch, mit dem ich mich wirklich gern auseinandersetze. [...] Dabei sind wir in der Auffassung des zu erwartenden Weges schärfste Gegensätze.

[...]"

Albert Einstein to Erwin Schrödinger, 8.8.1935

"Das System sei eine Substanz in einem chemisch labilen Gleichgewicht, etwa ein Haufen Schiesspulver, der sich durch innere Kräfte entzünden kann [...]. Im Anfang charakterisiert die Ψ -Funktion einen hinreichend genau definierten Zustand. Deine Gleichung sorgt aber dafür, dass dies nach Verlauf eines Jahres gar nicht mehr der Fall ist. Die Ψ -Funktion beschreibt dann vielmehr eine Art Gemisch von noch nicht und von bereits explodiertem System. Durch keine Interpretationskunst kann diese Ψ -Funktion zu einer adäguaten Beschreibung eines wirklichen Sachverhaltes gemacht werden; in Wahrheit gibt es eben zwischen exploter Finnen ter Binger, kein Zwischending

IQI Schrödinger's Cat: The Measurement Problem

$$|0\rangle_{a} + |1\rangle_{a} \rightarrow |0\rangle_{a} / |0\rangle_{a} + |1\rangle_{a} / |0\rangle_{a}$$

Schrödinger's Cat = Entanglement involving macroscopically distinct states

should be possible for arbitrarily large systems

IQI A mechanical cat? Schrödinger's mirrors

single electron-spin detection via magnetic resonance (MRFM) Rugar et al., Nature 430, 329 (2004)

qubit coupled to NEMS LaHaye, Roukes, Echternach (Caltech) Schwab (Cornell)

single-atom strong coupling to a monolithic microresonator Kimble group & Vahala group (Caltech) Aoki et al., Nature 443, 671 (2006)

IOI Opto-Mechanical Systems (a few examples)

Fabry-Perot cavity

Mavalvala (LIGO, MIT)

Bouwmeester (UCSB)

... and many others

Vahala (Caltech) Kippenberg (MPQ)

Toroidal microcavity

dispersively coupled membra

FARRY-PERDT - CAVITY

Herria

(Quantum-)Opto-Mechanics

1900 Lebedev, "Untersuchungen über die Druckkraft des Lichts", Ann. Phys. (1900)
1901 Nichols, Hull: "A preliminary communication on the pressure of heat and light radiation", Phys. Rev. 13, 307 (1901)

- intensity dependent phase shift of reflected light (Kerr-like interaction)
- Doppler-shift of reflected light due to mirror movement

IQI Quantum Effects of Radiation Pressure

uantum Optics (in a resonant cavity)

Generation of squeezed light

- C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, S. Reynaud, Phys. Rev. A 49, 1337 (1994)
- S. Mancini , P. Tombesi, Phys. Rev. A 49, 4055 (1994)

QND of photon numbers

- K. Jacobs, P. Tombesi, M. J. Collett, D. F. Walls , Phys. Rev. A 49, 1961 (1994)
- M. Pinard, C. Fabre, A. Heidmann, Phys. Rev. A 51, 2443 (1995) Homodyne Feedback
- S. Mancini, D. Vitali, P. Tombesi, Phys. Rev. Lett. 80, 688 (1998)
- P. F. Cohadon, A. Heidmann, M. Pinard, Phys. Rev. Lett. 83, 1374 (1999)

Optomechanical Entanglement

• S. Bose, K. Jacobs, P. Knight, Phys. Rev. A 56, 4175 (1997)

IQQuantum Information Aspects of Radiation Pressure

I wards the mechanical quantum ground state (Dec 2007)

OI High-Reflectivity High-Q Micromechanical Bragg Mirrors

3 - dry undercut of Si substrate

with Dieter Bäuerle (Linz) and Keith Schwab (Cornell)

4 - final free standing cantilever

5 - SEM picture of the cantilever

free-standing HR coating (TiO2/SiO2) dimensions: 520 x 120 x 2.4 μ m³ Reflectivity > 0.998, Q ~ 10,000

H. R. Böhm et al., Appl. Phys. Lett. 89, 223101 (2006)

free-standing HR coating (Ta2O5/SiO2) dimensions: 250 x 50 x 6 μ m³ Reflectivity > 0.9999, Q ~ 2,000

Gröblacher et al., Eur. Phys. Lett. 81, 54003

IQI Self-cooling of a micro-mirror by radiation pressure

Nature 444, 67 (2006)

IQI optical coatings: low absorption, low Q?

Eur. Phys. Lett. 81, 54003 (2008)

IOIDirect mechanical analysis of coating thermal noise?

•observed maximum Q (~3,000) is consistent with Ta2O5/SiO2 thermal coating noise obtained from LIGO

direct measurement of Q_coating
 provides direct access to coating thermal
 noise (no substrate correction is necessary)

substrate

IQNext generation of (quantum) micro-optomechanical devices

Eur. Phys. Lett. 81, 54003 (2008)

Conclusion & Outlook

- self-cooling demonstrates relevant coupling for quantum-opto-mechanics experiments (ground state, entanglement, etc.)
- Next step: improve devices (small effective masses, large optical finesse, high initial Qs, low initial Ts)

Relevant to this workshop:

- Micromachining of optical coatings seem to provide direct (quantitative!) access to coating thermal noise by mechanical analysis (no substrate corrections are needed)
- The current fabrication procedures do not affect the optical quality and are basically independent of the coating material
- We have identified AIGaAs Bragg mirrors as potential candidates for quantum-optomechanics experiments
 - Q (= coating thermal noise) is improved by an order of magnitude (at 6K)
 - Reflectivity is comparable to Ta2O5/SiO2 coatings
 - first estimates on losses (non-optimized coatings) yield O(10 ppm)

μm	WD = 4 mm	Aperture Size = 30.00 µm		Signal A = SE2	Date :21 Dec 2007	\sim
	Mag = 10.31 K X	EHT = 10.00 kV	Pixel Size = 33.8 nm	Signal B = SE2	Time : 13:51:59	

The Vienna team

Experiment: Markus Aspelmeyer (PI) Simon Gröblacher, Kathrin Gugler, Alexey Trubarov, Michael Vanner, Anton Zeilinger Theory:

Caslav Brukner, Tomasz Paterek

Johannes Kofler

Former group members:

Florian Blaser Hannes R. Böhm Sylvain Gigan

fqw

Austrian Science Fund (FWF) European Commission City of Vienna Foundational Questions Institute (FQXI)

Queen's College Belfast (UK) Mauro Paternostro, Myungshik Kim University of Camerino (Italy) David Vitali, Paolo Tombesi **Cornell University (USA)** Keith Schwab, Jared Hertzberg Imperial College (UK) Jens Fisert **IQOQI** Innsbruck (Austria) **Klemens Hammerer** University of Leeds (UK) Vlatko Vedral **University of Linz (Austria)** Dieter Bäuerle Lawrence Livermore NL (USA) Garrett Cole LIGO Cluster (USA) Greg Harry

The Mirror-Crew

