An Introduction to Noise in Frequency Stabilization Michael J. Martin

University of Colorado at Boulder, JILA

The Sr team:

-Andrew Ludlow

-Martin Boyd

-Gretchen Campbell

-Jan Thomsen

- Matt Swallows

-Travis Nicholson

-Sebastian Blatt

Group leader: Jun Ye

Mirror coatingsRamin Lalezari, Advanced Thin Films

New approaches: Jeff Kimble, Caltech

PTB collaborators we Sterr, Fritz Riehle

Motivations

- Optical atomic clocks (spectroscopy)
 - Gravity wave detection.

0.10

FWHM: .1 Hz

-2

-4

0

Laser Detuning (Hz)

- Quantum Optics. \bullet

More...

Introduction – Noise sources

-For 10 cm ultra-high-finesse cavity, shot noise contributes $\sim 10^{-16}$ with 10 μ W optical power.

Vibrational Sensitivity

- -Low frequency: Cavity subject to uniform acceleration.
- -Fractional length change scales linearly with length!

Chen et. al. PRA 74, (20

Vibrational Sensitivity: Mounting geometry

-Finite element analysis aids in determining vibrational sensitivity

-Eg. for 10cm ULE Cavity, sensitivities is at best 80 kHz/m/s² @ 698nm

Chen et. al. PRA 74, (200

Vibrational Sensitivity: Mounting geometry

-Short cavity \rightarrow vibrational insensitivity.

M. Notcutt et. al. Optics Letters 30, (20)

The JILA Sr clock laser

-Vibrational contribution: .1 Hz/rtHz @ 1 Hz.

-Finesse = 250,000

- -Spacer and substrate material: $ULE(\phi = 1.6 \times 10^{-5})$
- -Linear drift: <1 Hz/sec
- -Spacer length = 7cm

-System occupies < 1 m³

*Notcutt et. al PRA 73, (2006

The JILA Sr clock laser

*

-Mirror technology:

- 40 layers of Ta_2O_5 and SiO_2 ¹/₄ wave dielectric (stacks 10^{-4})

-Deposited via ion beam sputtering.

-Surface flatness and reflectivity support finesse of 250,000. -Substrate and coating thermal noise limited.

*Numata et. al. PRL 93, 20

Thermal noise

-With internal dissipation comes thermally driven fluctuation

$$S_{\xi} = \frac{4k_BT}{\omega^2} Re\left[Y_{\xi}\left(\omega\right)\right] \quad \left[\frac{\left[\xi\right]^2}{Hz}\right] \quad \text{(in 1 Hz BW)}$$

- -Most significant thermal contributions typically from mirror substrate and coating, **not cavity spacer**.
- -Thermoelastic noise small for low CTE materials.
- -Generalized coordinate—Gaussian-weighted surface displacement:

$$x(t) = \int |\psi_{00}(\vec{r},t)|^2 y(\vec{r},t) \, d^2 \vec{r}$$

Callen and Greene. PR 86 (195

A. Gillespie and F. Raab, PRD (19

Y. Levin. Physical Review D 57, 659

Mirror Thermal noise

Complex (lossy) Young's modulus: $E(\omega) = E_0 [1 + i\phi(\omega)]$

$$S_{x, mirror} \simeq \frac{4k_B T}{\omega} \frac{1 - \sigma^2}{\sqrt{\pi} E w_0} \phi_{sub}$$

-Fractional change scales inversely with length!

-ULE cavity has 1.5 times more substrate noise than coating noise.

K. Numata et. al. *PRL* 93, (2004). G. M. Harry et. al. *Class. Quant. Grav.* 19, (2002).

Long-term coherence (>1 s) across the visible spectrum

Notcutt *et al.*, *Opt. Lett.* 30, (2005). Ludlow *et al.*, *PRL* 96, (2006).

Frequency fluctuations from thermal noise in Fabry-Perot cavities

Notcutt et. al PRA 73, (2006)

Comparison of results & theory

	Calculated	Measured	Ratio	Measured
Case	Allan-dev.	Lowest Point	Measured/Calc	Displacement
		A-dev		Noise
				(m/rtHz)

FS Subs	2.8×10 ⁻¹⁵	5.0×10 ⁻¹⁵	1.8	
Zerodur Subs	1.3×10 ⁻¹⁴	2.0×10 ⁻¹⁴	1.6	1.0×10 ⁻¹⁵
698 nm cavity	9.4×10 ⁻¹⁵	2.5×10 ⁻¹⁴	2.7	1.2×10 ⁻¹⁵
10 mm w/ Zer	3.8×0 ⁻¹⁴	1.0×10 ⁻¹³	2.7	1.0×10 ⁻¹⁵
10mm w/ FS	7.1×10 ⁻¹⁵	3.0×10 ⁻¹⁴	4.2	2.7×10 ⁻¹⁶

JILA Clock laser frequency noise

A. D. Ludlow et. al. *Opt. Lett.* 32, 641

Frequency noise S.D.

Ludlow et al., Opt. Lett. 32, 641 (2007)

Thermal Noise

-Can relate fractional frequency stability (Allan Deviation) to frequency noise spectral density with 1/f behavior:

Record high precision and stability

- Single trace without averaging
- Estimated instability

 $\sigma(\tau) \sim 2 \times 10^{-15} \, / \sqrt{\tau}$

Ludlow *et al.*, Science **in press** (2008) Boyd *et al.*, Science **314**, 1430 (2006) Ludlow *et al.*, Opt. Lett. **32**, 641 (2007)

QPN on the horizon

- -To reach the quantum projection potential we mus overcome the dominant thermal noise.
- -Higher substrate Q
- -Lower temperature

- -For the future: Si cavity
 - $Q\sim 10^8$
 - Thermal coefficient = 0 @ 120 K
 - 150 GPa Young's modulus

Conclusions

-Designs trade off between vibrational and thermal sensitivity.

-Longer cavities → better thermal insensitivity, greater vibrational sensitivity.

-Thermal noise in substrate/coatings is currently largest noise source.

-Higher Q substrate can reduce this contribution.

-Possible coating noise cancellation schemes? (Jeff Kim

-Lower temperatures help, but only \overline{as} .

-New Silicon design will improve both vibrational insensitivity and increase material Q.

The Sr team: -Andrew Ludlow -Jan Thomsen - Matt Swallows -Martin Boyd -Travis Nicholson -Gretchen Campbell -Sebastian Blatt **Group leader: Jun Ye** Mirror coatingsRamin Lalezari, Advanced Thin Films New approaches: Jeff Kimble, Caltech PTB collaborators lwe Sterr, Fritz Riehle