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This talkThis talk

1. Frequency stability of laser locked to optical cavity

2. What is thermal noise?

3. Q measurements of cavity materials

4. Calculation of thermal noise and result

5. How to reduce thermal noise?

6. Summary
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Frequency stability of rigid cavityFrequency stability of rigid cavity

Rigid cavity as a frequency reference

– Laser light stored within the cavity

Possible noise sources

– Non-fundamental noise source
• Length change due to temperature variation

• Length change due to vibration (seismic noise)

• Mirror heating, AF-RF conversion, pointing noise, circuit noise etc.

– Fundamental noise source

• Thermal noise as a result of statistical physics
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FluctuationFluctuation--Dissipation Theorem Dissipation Theorem 

Calculation of thermal noise spectrum G(f)

– Based on FDT (Fluctuation-Dissipation Theorem)
• Imaginary part of transfer function

– Useful form
Wdiss: dissipated energy under cyclic force

(averaged, per unit time)

F0: force amplitude
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Brownian noise in mirrorBrownian noise in mirror

Dissipated energy through mechanical loss
• φ : Loss angle

– At resonance :  φ =1/Q

Noise observation with Gaussian weighting (beam)

– Gaussian force is applied in calculation

φ×∝ energy)strain  Stored(dissW
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Thermal noise from substrate, coatingThermal noise from substrate, coating

Parameter dependencies

– What happens if we apply a Gaussian force?

Thermal noise

Dissipated energy

Stress

Stressed volume

CoatingSubstrate
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Geometry of rigid cavityGeometry of rigid cavity

Short length FP cavity

Two mirrors connected by a spacer

– Spacer maintains fixed displacement between
mirrors

• Residual thermal noise can be observed 

– Spacer has small contribution to thermal noise
if mirrors are far apart
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4. Calculation and result4. Calculation and result

Calculation of strain energy under cyclic force

– Done by solving EQuation of Motion (EQM) of the system
• Finite element method adopted

– Procedure
• 1) Prepare rigid cavity mechanical model

• 2) Apply cyclic force to the observing (beam-illuminating) points

• 3) Calculate strain energy within the system based on EQM

QdVrfWdiss /)()( ∫=
rε

Stored strain energy Quality factor

Calculation Experiment
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QQ--measurement of cavity materialsmeasurement of cavity materials

Mechanical quality factor (Q) measurement of cavity materials

– Decay of free vibration measured by Michelson interferometer

– Fairly low quality factor measured
• ULE : Q~60000

• Silica: Q>107

Measurement system
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Calculation modelCalculation model

– Modeled noise of NIST and VIRGO cavities
• World highest stabilities with rigid cavity 

• Results limited by unknown noise sources

– Calculation assumptions
• Spacer

– Material: ULE (Q=60000)

• Mirror (optically contacted)

– Material: ULE

• Coating

– phi(1/Q)=4x10-4

– FEM model
• ANSYS

• Semi-3D model (2-D axisymmetric)

Half of the cross section model of the cavity
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Comparison with experimentsComparison with experiments

Calculations agreed well with measurements

– ~0.01Hz/rtHz @100 Hz level (563nm wavelength)

• We cannot neglect thermal noise (Brownian motion) anymore!

– Spacer shape and/or material have marginal effects.

0.0001

0.001

0.01

0.1

1

10

100

1000

Fr
eq

ue
nc

y 
N

oi
se

 [H
z/

rt
H

z]

10-3 10-2 10-1 100 101 102 103 104

Frequency [Hz]

Experimental result (NIST)

Experimental result (VIRGO)

 Calculation result (Ex.2)
    Spacer contribution
    Mirror substrate contribution
    Coating contribution

Notcutt, Hall, Phys Rev A 73 (2006)

“We compare frequency
noise of lasers locked to 
cavities of differing lengths 
and materials…results are in 
agreement with Numata, 
Kemery, and Camp”
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5. How to reduce thermal noise?5. How to reduce thermal noise?

Research directions in the ground-based GW community

– Smaller loss in substrate and coating
• Fused silica mirror substrate

• New lower-loss coating materials

• Factor 3 - 5 improvement in frequency stability possible

– Use of a larger beam
• Large mirror, large g factor

• Gain small in a rigid cavity

– Cooling
• LCGT project in Japan

• Applicable to rigid cavities if carefully designed

– Other techniques
• Thermal noise subtraction, folded cavity, flat-topped beam etc...

• Possibly usable
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Other possible causes of lossesOther possible causes of losses

Other possible causes of loss

– Thermoelastic noise
• Roughly, thermoelastic noise is proportional to CTE.

– Still smaller than Brownian if silica/ULE is used for substrate.

– Surface loss
• Rough surface has larger mechanical loss.

– Support loss
• Isolation from external world

– Contact loss etc…
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6.Summary6.Summary

Thermal noise limit found to frequency stability of optical cavity
• Experiment: Q measurement of cavity materials

• Calculation: Numerical analysis of strain energy

• Agreement with the world-highest level stabilization results

– Frequency noise of 0.01 Hz / Hz1/2 at 100 Hz

Suggestions to lower noise
• Use higher Q silica mirror substrate

– Gain of factor 3 in noise

• Lower mechanical loss of coatings

– Additional gain of ~ factor 2 may be possible
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