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This talk

1. Frequency stability of laser locked to optical cavity
2. What is thermal noise?

3. Q measurements of cavity materials

4. Calculation of thermal noise and result

5. How to reduce thermal noise?

6. Summary



Frequency stability of rigid cavity

Rigid cavity as a frequency reference

— Laser light stored within the cavity

Possible noise sources

— Non-fundamental noise source

* Length change due to temperature variation
» Length change due to vibration (seismic noise)

« Mirror heating, AF-RF conversion, pointing noise, circuit noise etc.

— Fundamental noise source

« Thermal noise as a result of statistical physics

Rigid cavity




Fluctuation-Dissipation Theorem

% Calculation of thermal noise spectrum G(f)

— Based on FDT (Fluctuation-Dissipation Theorem)

* Imaginary part of transfer function
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— Useful form
W, dissipated energy under cyclic force
Gx( f ) = 8kBT Wdiss g f ) (averaged, per unit time)
a)z FO F,: force amplitude

-
i @ —

F=Fgcos(wt)




Brownian noise in mirror

Dissipated energy through mechanical loss

¢ : Loss angle \ Lok

— Atresonance : ¢=1/Q
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oc (Stored strain energy)x ¢

Noise observation with Gaussian weighting (beam)

— Gaussian force is applied in calculation



Thermal noise from substrate, coating

% Parameter dependencies

— What happens if we apply a Gaussian force? i i >
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Geometry of rigid cavity

Short length FP cavity
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Two mirrors connected by a spacer ‘
— Spacer maintains fixed displacement between D H
mirrors
» Residual thermal noise can be observed
— Spacer has small contribution to thermal noise

if mirrors are far apart




4. Calculation and result

% Calculation of strain energy under cyclic force

— Done by solving EQuation of Motion (EQM) of the system
* Finite element method adopted
— Procedure

» 1) Prepare rigid cavity mechanical model
« 2) Apply cyclic force to the observing (beam-illuminating) points

« 3) Calculate strain energy within the system based on EQM

W, (f) = [£()dV /Q

Stored strain energy  Quality factor d(—ﬂ

Calculation Experiment




Q-measurement of cavity materials

% Mechanical quality factor (Q) measurement of cavity materials
— Decay of free vibration measured by Michelson interferometer

— Fairly low quality factor measured
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Calculation model

— Modeled noise of NIST and VIRGO cavities
» World highest stabilities with rigid cavity

e Results limited by unknown noise sources

— Calculation assumptions

e Spacer

— Material: ULE (Q=60000)
« Mirror (optically contacted)

— Material: ULE
« Coating

— phi(1/Q)=4x10*

— FEM model

« ANSYS
« Semi-3D model (2-D axisymmetric)

Half of the cross section model of the cavity
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Frequency Noise [Hz/rtHz]

Comparison with experiments

Calculations agreed well with measurements
— ~0.01Hz/rtHz @100 Hz level (563nm wavelength)

* We cannot neglect thermal noise (Brownian motion) anymore!

— Spacer shape and/or material have marginal effects.
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e Calculation result (EX 2) Notcutt, Ha”, Phys Rev A 73 (2006)
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5. How to reduce thermal noise?

Research directions in the ground-based GW community

Smaller loss in substrate and coating

Fused silica mirror substrate
New lower-loss coating materials

Factor 3 - 5improvement in frequency stability possible

Use of a larger beam

Large mirror, large g factor

Gain small in a rigid cavity

Cooling

LCGT project in Japan

Applicable to rigid cavities if carefully designed

Other techniques

Thermal noise subtraction, folded cavity, flat-topped beam etc...

Possibly usable
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Other possible causes of losses

% Other possible causes of loss

Thermoelastic noise

* Roughly, thermoelastic noise is proportional to CTE.

— Still smaller than Brownian if silica/ULE is used for substrate.
Surface loss
* Rough surface has larger mechanical loss.
Support loss
» |solation from external world

Contact loss etc...
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6.Summary

Thermal noise limit found to frequency stability of optical cavity

» Experiment: Q measurement of cavity materials
« Calculation: Numerical analysis of strain energy
« Agreement with the world-highest level stabilization results

— Frequency noise of 0.01 Hz / Hz'? at 100 Hz
Suggestions to lower noise

» Use higher Q silica mirror substrate
— Gain of factor 3 in noise
» Lower mechanical loss of coatings

— Additional gain of ~ factor 2 may be possible
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