

Displacement calibration techniques for the LIGO detectors

Evan Goetz
(University of Michigan)
for the
LIGO Scientific Collaboration

April 2008 APS meeting

Displacement Sensitivity for the LIGO Interferometers

The LIGO Interferometers

LSC

Simple-Michelson technique

 Leverage calibration from the laser wavelength (10⁻⁶ m)

 Set interferometer into simple configurations to determine actuation

Frequency modulation technique

 Compare peaks in error signal from frequency with the length modulation for a single arm cavity

Radiation pressure technique – Photon calibrator

 External force on the end mirror using two beams (to avoid sensing mirror deformation) from an auxiliary, power-modulated laser

$$\Delta L(\omega \gg \omega_0) \approx \frac{2P_0 \cos \theta}{Mc\omega^2}$$

 Compare peaks in error signal of photon calibrator with the voice-coil actuator signal for the full interferometer

LIGO

Example comparison of techniques. Measured actuation strengths (nm/ct)

Summary

- Three different techniques for measuring the voice-coil actuation coefficient of the LIGO end test masses agree at the 5 percent level
 - » Simple-Michelson: Based on laser wavelength, various configurations
 - » VCO: Based on frequency modulation, single-arms locks
 - » Photon calibrator: Based on radiation pressure, full interferometer configuration
- We use the actuation results to determine sensitivity and set astrophysical upper limits
- Future science runs of LIGO will use a combination of these techniques to reduce systematic errors

Displacement Sensitivity for the LIGO Interferometers

Simple-Michelson Technique

- Allow simple-Michelson to swing freely through fringes
 - » Derive the slope of the error signal at the zero crossing from the max-min value
 - » Calibrates the error signal when the simple-Michelson is locked
- Measure the open loop gain of the simple-Michelson loop when it is locked
- For one of the Michelson mirrors, measure the transfer function of the excitation signal to the error signal
 - » Closed loop measurement
- Obtain the voice-coil calibration for the mirror
 - » Using closed loop transfer function measurement, open loop gain measurement, the error signal calibration and the transfer function for a suspended mass (pendulum)
- Use different configurations
 - » Symmetric or asymmetric simple-Michelson
 - » Single arm, Fabry-Perot cavity

LIGO

Outline of frequency modulation technique

- Calibrate the frequency modulation coefficient of the VCO for the laser frequency stabilization servo
 - » Lock the 80 MHz VCO modulation frequency to a frequency synthesizer
 - » Inject frequency modulation and measure the modulation sideband to 80 MHz carrier ratio using an RF spectrum analyzer

$$\frac{P_{\mathit{SB}}}{P_{\mathit{carrier}}} = \frac{J_{\scriptscriptstyle 1}(\Gamma)^{\scriptscriptstyle 2}}{J_{\scriptscriptstyle 0}(\Gamma)^{\scriptscriptstyle 2}} \qquad \qquad \frac{J_{\scriptscriptstyle 1}(\Gamma)}{J_{\scriptscriptstyle 0}(\Gamma)} \cong \frac{\Gamma}{2} = \frac{\Delta \! f}{2f_{\scriptscriptstyle \mathrm{mod}}} \ \, \text{VCO calibration in Hz/count}$$

Elastic deformation

 Photon calibrator beam elastically deforms the mass where it reflects from the ETM (S. Hild, et. al. 2007 Class. Quantum Grav. 24 5681-5688)

Comparison of the techniques

