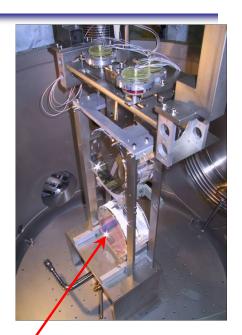


Low temperature dissipation in tantala and silica films

I. Martin¹, H. Armandula³, R. Bassiri¹, E. Chalkley¹, C. Comtet⁴, M.M. Fejer⁵, A. Gretarsson⁶, G. Harry⁷, J. Hough¹, P. Lu⁵, I. McLaren¹, J-M.M. Mackowski⁴, N. Morgado⁴, R. Nawrodt², S. Penn⁸, A. Remillieux⁴, S. Reid¹, S. Rowan¹, R. Route⁵, A. Schroeter², C. Schwarz², P. Seidel², K. Vijayraghavan⁵, W. Vodel², A. Woodcraft¹

¹SUPA, University of Glasgow, Scotland. ²*Friedrich-Schiller University, Jena, Germany.* ³*LIGO Laboratory, California Institute of Technology, USA.* ⁴*LMA, Lyon, France.* ⁵Stanford University, USA. ⁶*Embry-Riddle Aeronautical University, USA.* ⁷*LIGO Laboratory, Massachusetts Institute of Technology, USA.* ⁸*Hobart and William Smith Colleges, USA.*



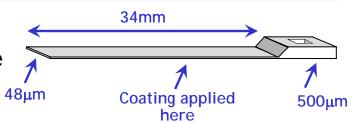
Introduction

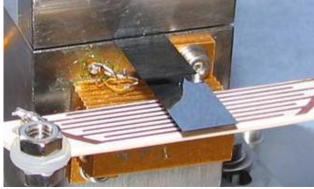
- Mechanical dissipation from dielectric mirror coatings is predicted to be a significant source of thermal noise for advanced detectors.
- Experiments suggest
 - Ta₂O₅ is the dominant source of dissipation in current SiO₂/Ta₂O₅ coatings
 - Doping the Ta₂O₅ with TiO₂ can reduce the mechanical dissipation

 Mechanism responsible for the observed mechanical loss in Ta₂O₅ as yet not clearly identified

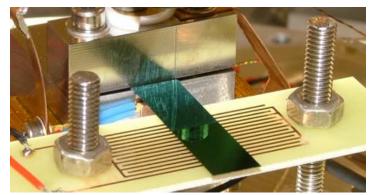
GEO600 mirror suspension, with HR coating on front face.

- Studying dissipation as a function of temperature of interest to:
 - Determine dissipation mechanisms in the coatings, possibly allowing dissipation to be reduced
 - Evaluate coating for possible use in proposed cryogenic gravitational wave detectors


UNIVERSITY of


GLASGOW

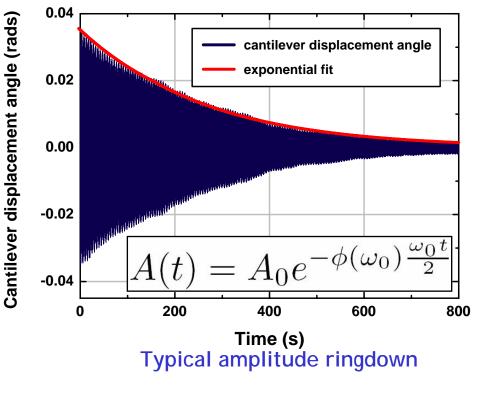
Single layer coating samples for low temperature studies



- Thin silicon substrates used for coating
 - Loss of silicon decreases at low temperature
 - Coating will dominate the loss

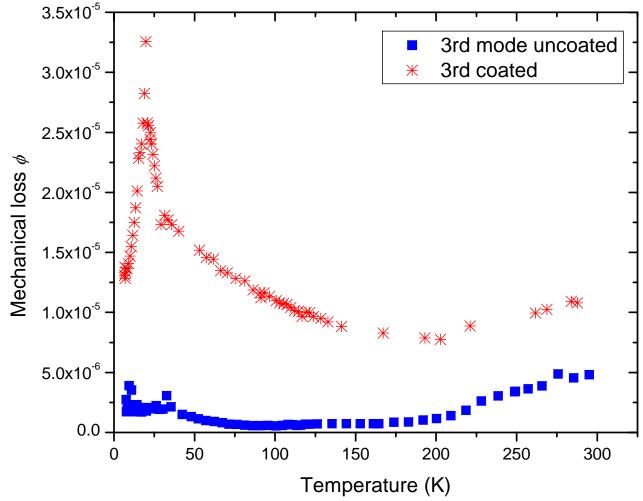
Uncoated silicon cantilever in clamp

Titania doped tantala coated silicon cantilever in clamp


- Samples etched from silicon wafers by colleagues at Stanford, with thicker clamping block to isolate cantilever from clamp
- 0.5 μ m thick films deposited by ion beam sputtering, including (a) Ta₂O₅ doped with (14.5 ± 1)% TiO₂ (b) un-doped Ta₂O₅ (c) SiO₂

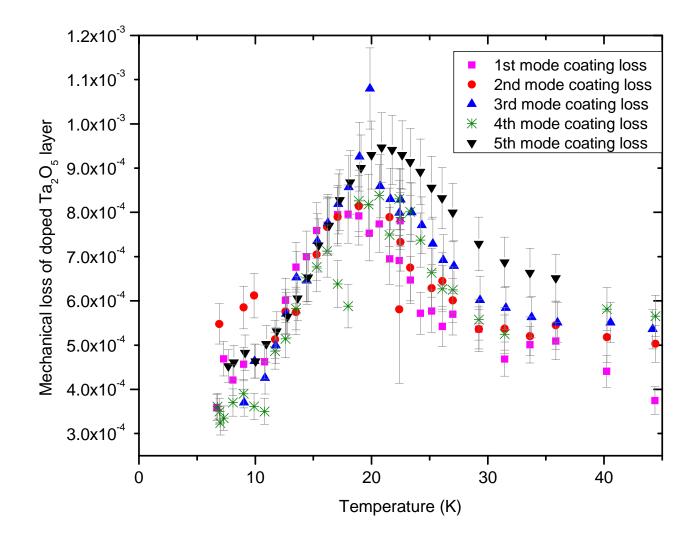
Measuring coating loss

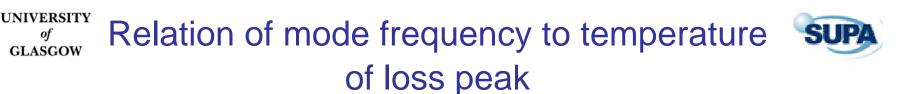
- Bending modes of cantilever excited electrostatically, loss φ(ω) obtained from exponential amplitude ringdown
- Loss of coating material calculated from losses of coated and un-coated cantilevers
- Loss of coating material is given by:

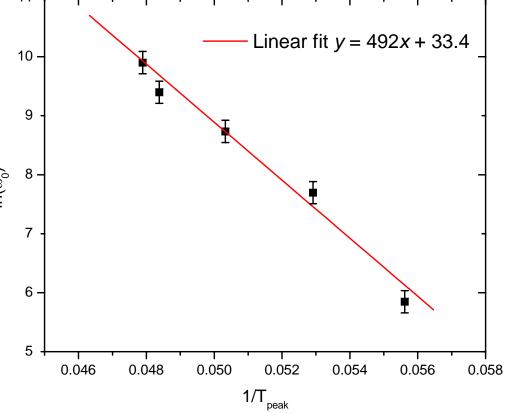

$$\phi_{\text{coating}} = \frac{Y_{cantilever}}{3Y_{coating}} \frac{t_{cantilever}}{t_{coating}} (\phi_{coated-sample} - \phi_{un-coated-sample})$$
Ratio of energy stored in cantilever to energy stored in coating Difference in loss between coated and un-coated cantilevers

Mechanical loss measurements

 Comparison of the mechanical loss of the third bending mode (~1000 Hz) for a cantilever coated with Ta₂O₅ with 14.5 % TiO₂ (LMA), and an identical un-coated cantilever

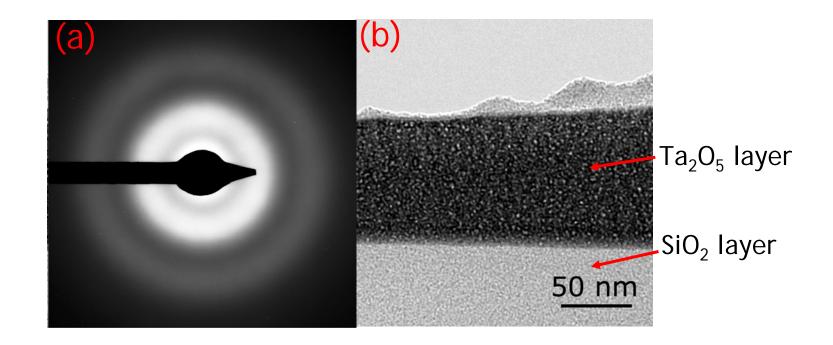



of GLASGOW

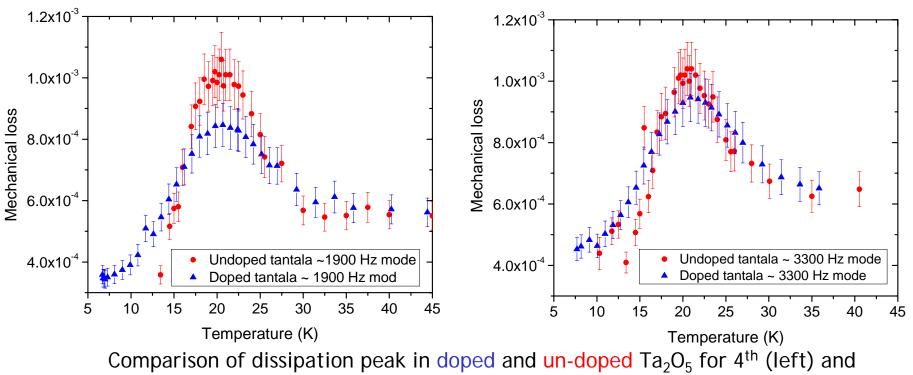

Low temperature coating loss peak

A dissipation peak at ~18-20 K observed in TiO₂-doped Ta₂O₅

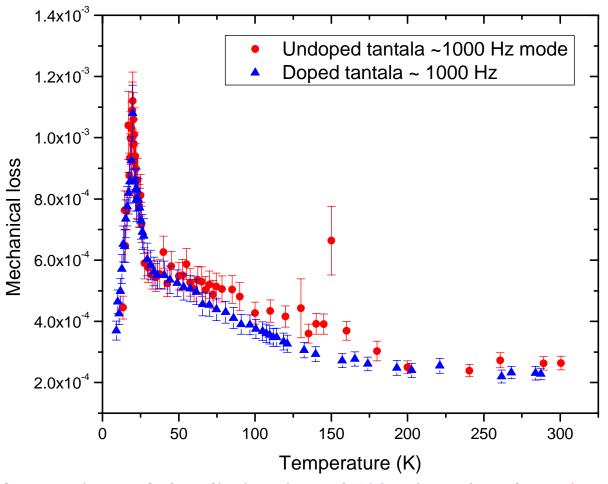
- Can calculate an activation energy associated with the dissipation peak of (42 ± 2) meV
- The low temperature dissipation peak in fused silica has a similar activation energy (44 meV)
- Oxygen atoms can undergo thermally activated transitions between two states in a double well potential, corresponding to stable bond angles


- Width of the dissipation peak thought to be related to the distribution of Si-O bond angles in the sample
- Results suggest a similar dissipation mechansims may be responsible for low temperature loss peak in Ta₂O₅

of GLASGOW

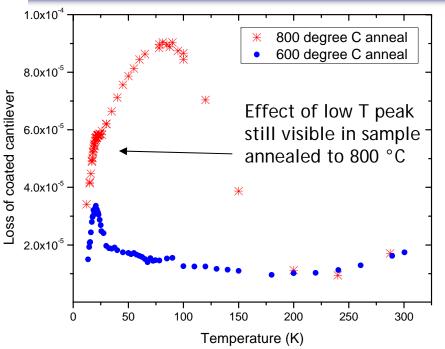

Convergent beam electron diffraction measurements (a) of a doped ion-beam sputtered Ta_2O_5 layer (see TEM image, (b)) showing only diffuse rings of intensity, confirming that the layer is amorphous.

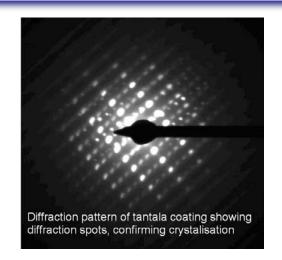
Effect of doping Ta₂O₅ with 14.5 % TiO₂


5th bending modes (right).

 Doping appears to reduce the height of the peak and slightly increase the width of the peak

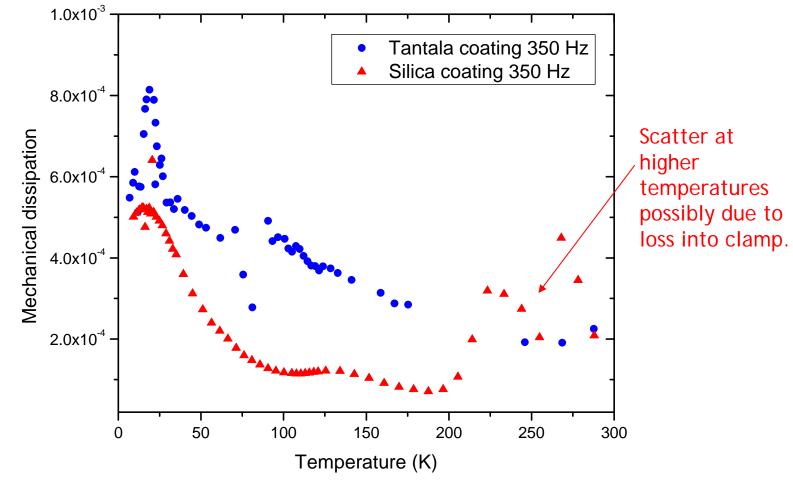
Effect of doping Ta₂O₅ with 14.5 % TiO₂


Comparison of the dissipation of TiO₂-doped and un-doped Ta₂O₅


Doping reduces loss of Ta₂O₅ throughout temperature range

Effect of annealing

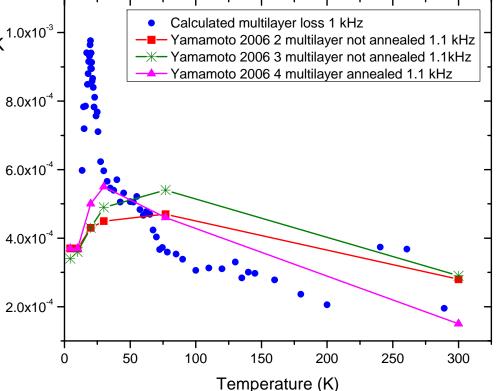
Left: Loss at 1900 Hz of Ta_2O_5 annealed at 800 °C and 600 °C. Right: Electron diffraction measurement of Ta_2O_5 annealed at 800 °C


- Heat treatment can reduce dissipation in SiO₂, possibly by changing bond angle distribution. May be possible to modify characteristics of the dissipation peak in Ta₂O₅ by annealing.
- Experiment underway to measure un-doped Ta₂O₅ annealed at 300, 400, 600 and 800 °C.
- Large peak at ~ 80 to 90 K in coating annealed at 800 °C, perhaps due to (expected) onset of polycrystalline structure, as shown in electron diffraction image above.

of GLASGOW

Comparison of SiO₂ and Ta₂O₅

Loss of ion beam sputtered SiO₂ is significantly lower than loss of Ta_2O_5 between 10 and 300 K.


UNIVERSITY of

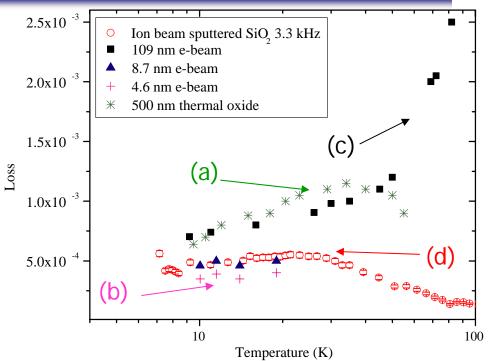
GLASGOW

Comparison to multilayer results of Yamamoto et al

- Loss of single SiO₂ and Ta₂O₅ layers used to calculate loss in a 31 layer multilayer coating, as measured by Yamamoto et al^{*}
- Yamamoto's results:
 - Show no evidence of a large peak^{1.0x10³} at 20 K
 - Are not inconsistent with a peak 8.0x10⁴. at slightly higher T, with T_{peak} possibly lowered by annealing Mechanical loss
- Apparent discrepancy in results could be explained by:
 - Differences in annealing temperature and / or coating layer thickness?
 - Different coating thermoelastic loss between coatings on sapphire and silicon substrates
 - Not enough data for multilayer coating

Calculated multilayer coating loss at 1 kHz compared to Yamamoto's measured multilayer loss at 1.1 kHz

*Yamamoto et al., Phys. Rev. D 74, 022002 (2006)



UNIVERSITY

^{of} GLASGOW Silica loss at low temperature – comparison of deposition methods

- Bulk silica & thermal oxide^{1,2} (a) have dissipation peak at ~ 35 K
- e-beam SiO₂ (5.5 kHz)^{1,2} (b), (C)
 - No dissipation peak at 30 40 K
 - Thin (few nm) films have lower loss than bulk SiO₂, loss is flat as T increased (b)
 - Thicker (tens to 100 nm) films have higher loss, rising rapidly above 10 K (c)

- Ion beam sputtered coating (d)
 - Broad loss peak between 20 and 30 K (d). Peak loss is lower (and at lower temperature) than in bulk / thermal SiO_2
 - Level of loss can be as low as for 4 to 8 nm of e-beam SiO₂, significantly lower loss and different temperature dependent behaviour to thick e-beam SiO₂
- Plan to continue these studies to gain better understanding of how the deposition technique/material microstructure is related to dissipation mechanism

¹White and Pohl, Phys. Rev. Lett. 75 (1995) 4437 – 4439, ²White and Pohl, Physica B 219&220 (1996) 267-269.

Conclusions

- Dissipation peak observed at ~ 20 K in 500 nm films of Ta₂O₅, with activation energy 42 ± 2 meV. Possible dissipation mechanism is thermally activated transitions of the oxygen atoms.
- Some evidence that TiO₂ doping reduces the height of the dissipation peak in addition to reducing the loss at room temperature.
- Ta₂O₅ coatings annealed at 800 °C display a large dissipation peak at ~90 K.
- Ta₂O₅ has higher loss than SiO₂ between 10 and 300 K
- Ion beam sputtered silica has significantly lower loss than similar thicknesses of e-beam silica below 100 K - further studies of relation of deposition technique/material microstructure to dissipation mechanism planned
- A full understanding of the dissipation mechanisms in coatings may allow
 - Mechanical loss at room temperature to be further reduced
 - Reduction of loss at particular temperatures of interest for future cryogenic detectors

- Measure effect of annealing temperature on loss in undoped Ta₂O₅ as a function of temperature
- Parallel TEM studies of the affect of annealing on the structure of Ta₂O₅
- Continued investigation of the effects of TiO₂ doping
- Collaboration with INFN lab at Legnaro to study the loss of silica films (ion beam sputtered and thermal oxide) at ultra-cryogenic temperatures – may yield more information on loss mechanisms
- Investigate mechanical loss of possible alternative high index materials - e.g. hafnia (see talk by Eleanor Chalkley)