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LSC

) OPO Design
Hemilithic vs Bow-tie Configuration

o —

Hemilithic (Standing Wave)
e Fewer reflecting surfaces, thus having lower
loss

e Negligible spatial and polarisation distortion
through its normal incidence operation.

¢ Limited number of input ports/ reflected
beams from normal incidence operation.

e Single air/crystal interface, but greater
difficulty in exchange of crystals

e Squeezer in hemilithic configuration to be
installed at GEO600.

=

Bow-tie (Travelling Wave)
* Inherent isolation to backscattered light
* Less critical on additional Faraday
isolation

e Bowtie configuration minimizes astigmatism.

* Ready access to multiple input ports/
reflected beams, due to their physical
separation.

e Ability for easy exchange of crystals.
e The travelling wave characteristic makes the

phase matching condition less dependent on
temperature.




OPO Design
Doubly Resonant Cavity

Cavity resonant at both fundamental (1064nm) and pump (532nm) wavelengths.

Advantages

e Simplicity of obtaining a cavity length error signal (using the pump 532nm field)
e Assurance of optimum mode matching of the interacting fields.
e Non-matched spatial components of the pump field (to the cavity mode) filtered
e The pump field amplitude is resonantly enhanced, giving a higher nonlinear gain for the
same input pump power.
*Allows possibility of increasing the transmission of the output coupler at 1064nm to

increase n,.

e Less critical to internal cavity losses.

* Provide additional signal for phase-matching locking (if required).




OPO Design
Nonlinear Crystal

Choice between 2 crystals: PPKTP and MgO:LiNbO;

PPKTP MgO:LiNbO,
* Very high nonlinearity via the use of the * Lower nonlinearity compare with PPKTP
da; of KTP.

* More robust than PPKTP.
 Grey tracking was a known problem when
PPKTP is used near the UV wavelength * MgO doping is used to increase the
(795/397 nm). To date, we have no data on | | photo-refractive damage threshold.

grey tracking at 1064/532 nm.
e Larger parasitic photothermal effects.

* Squeezer using MgO:LiNbO; to be
installed at GEO600.

* Best result obtained was > 9 dB squeezing | | * Best results obtained was > 10 dB
(Tokyo University). of squeezing (AElI Hannover).




LSC OPO Design Summary

* Configuration: Doubly Resonant Bow-Tie Cavity

* Crystal: PPKTP [Flat-wedge geometry]

* Finesses ~ F'=50 for 1064nm, ~F'= 100 for 532nm
* Temperature Control: Oven and Newport Temperature Controller
* Optical Path Length: ~700mm

* Physical Dimensions: ~ 200 mm x 150mm
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OPO Squeezer Control

Dispersion Compensation

e The reflections at mirrors from dielectric coatings will produce a differential
phase shift between the pump and fundamental fields. Dispersion compensation is
required to co-resonate both fields, obtained through the use of a flat- (1-2 degree)
wedge surface geometry of the nonlinear crystal.

Cavity Length Control

e Pound-Drever-Hall locking with cavity error signal derived from the reflected pump
(532nm) field.

e Control of cavity length is done via a single PZT with a locking bandwidth of

20 kHz. If needed, a high speed PZT coupled with Molybdenum rod can extend the
locking bandwidth to around 200 kHz.

Squeezed Quadrature and Local Oscillator (LO) phase control
e Coherent (Frequent Shifted Sideband or F.S.S.) locking to implemented.

Temperature
e A Newport temperature controller (Series 3040) can be used to control the crystal
phase matching temperature accurate to £1 mK (long term stability).
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Integration with LIGO
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LSC

Integration with LIGO
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LSC Integration with LIGO
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Integration with LIGO
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Integration with LIGO
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Integration with LIGO
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Integration with LIGO
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Integration with LIGO
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