

ADVANCED LIGO SUSPENSIONS LSC-Virgo Meeting September 2008

HAM Suspensions Update

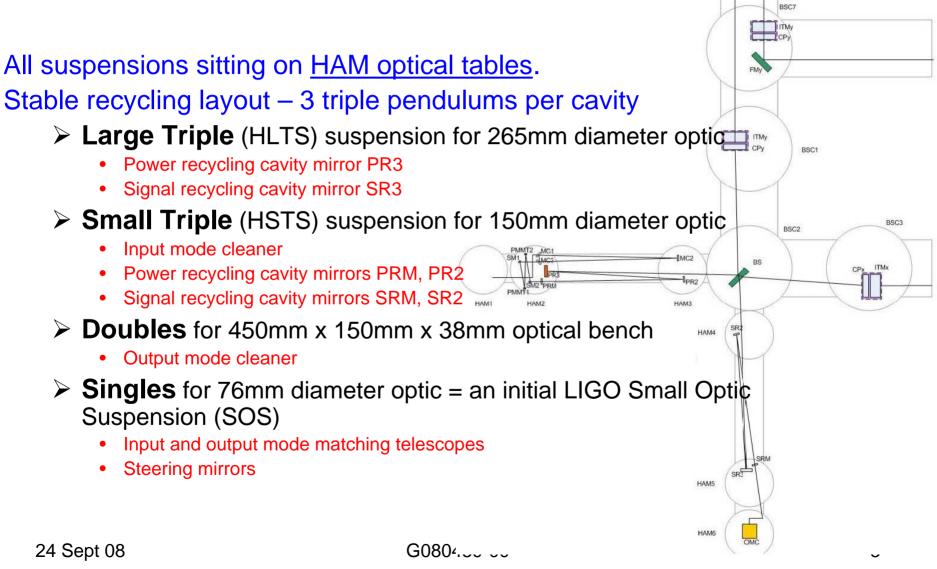
Janeen Romie on behalf of Advanced LIGO US Suspension team

http://ilog.ligo-wa.caltech.edu:7285/advligo/Suspensions

17 March 2008

LIGO-G080439-00-Z

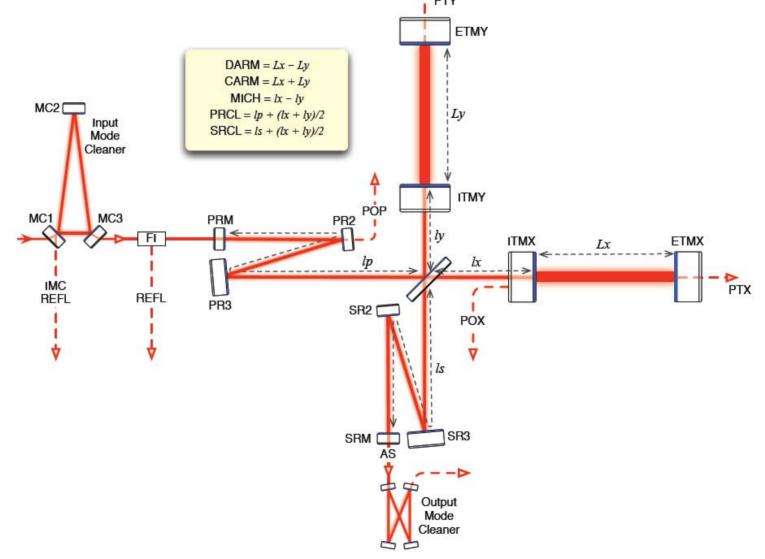
Advanced LIGO SUS Team

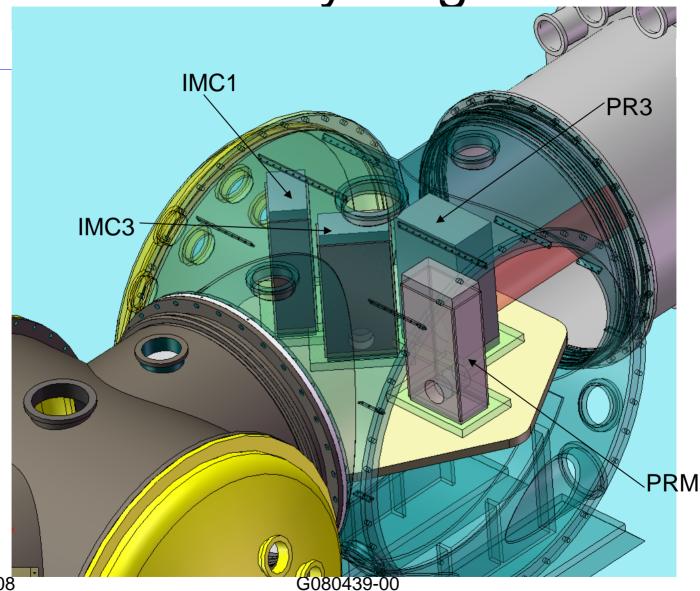

- LIGO Caltech: R Abbott, H Armandula, M Barton, D Coyne, C Echols, J Heefner, A Heptonstall, K Mailand, N Robertson (also at Glasgow), C Torrie
- LIGO MIT: P Fritschel, R Mittleman, B Shapiro, N Smith, S Waldman
- LIGO LHO: B Bland, D. Cook, G Moreno
- LIGO LLO: D. Bridges, T Fricke, M Meyer, J Romie, D Sellers, G Traylor
- University of Glasgow: C Craig, L Cunningham, A Cumming, G Hammond, K Haughian, J Hough, R Jones, R Kumar, I Martin, S Rowan, K Strain, K Tokmakov, M Van Veggel
- Rutherford Appleton Laboratory (RAL): A Brummitt, J Greenhalgh, T Hayler, J O'Dell, I Wilmut
- University of Birmingham: S Aston, R Cutler, D Lodhia, A Vecchio
- University of Strathclyde: N Lockerbie

G080439-00

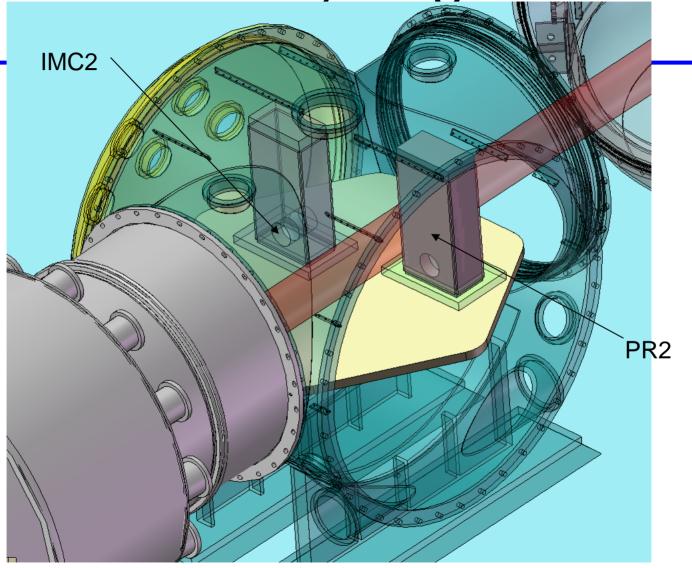
HAM Suspensions

advancedligo





Stable Recycling Layout


advancedlig Stable Recycling: HAM2

advancedligo Stable Recycling:HAM3

G080439-00

HAM Suspensions Status

Large Triples

Prototype for Recycling Mirror R3 suspension is being fabricated now. Assembly at LLO.

- structure is stainless steel so less welding issues
- resonance testing at Caltech next month

Small Triples

Input Mode Cleaner (IMC) suspension prototypes fully tested at LASTI

- triple electronics requirements defined
- PDR soon

Double

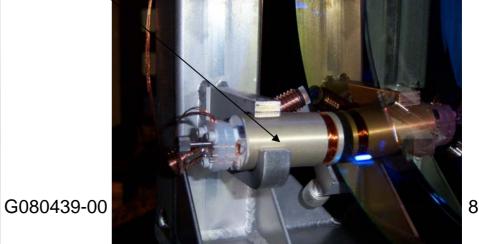
LLO & LHO Output Mode Cleaners (OMC) installed and being tested.

Singles

Assumed that only small updates of SOS required.

24 Sept 08

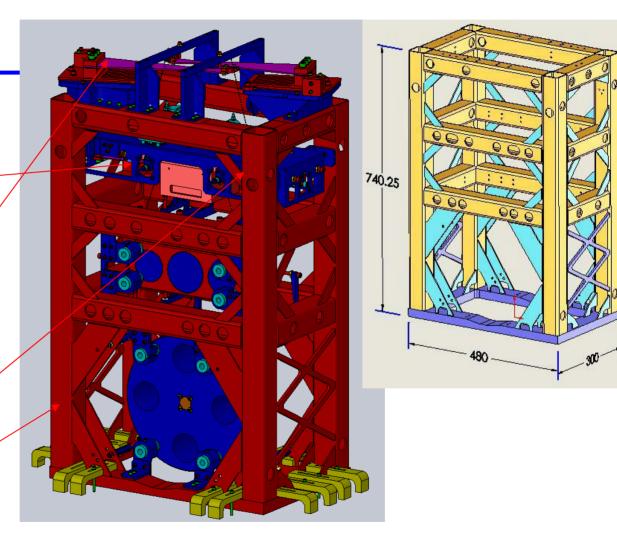
24 Sept



Triple SUS osems

Table 1: Magnet Sizes and Actuator Strengths

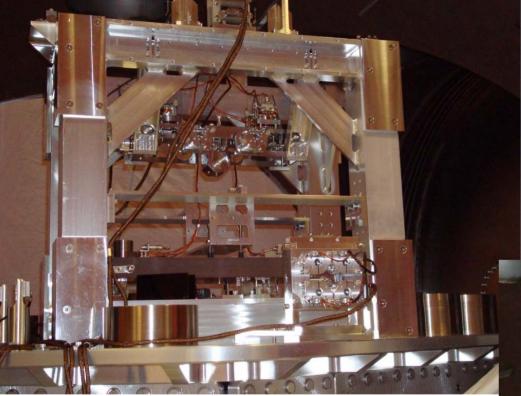
Suspension Type/Stage	OSEM Type	Magnet Size	Actuation Strength
BS TOP	BOSEM	10mm x 10mm	2 N/A
IMC TOP	BOSEM	10mm x 5mm	1 N/A
Small Cavity Triple TOP	BOSEM	10mm X 5mm	1 N/A
Large Cavity TOP	BOSEM	10mm x 10mm	2 N/A
BS Middle Stage (L1)	BOSEM	10mm x 5mm	1 N/A
IMC and Cavity Middle	LIGO I	LIGO Magnets	0.016 N/A
Stage (L1)			
IMC and Cavity Mirror	LIGO I	New Magnets	0.002 N/A
Stage (L2)			

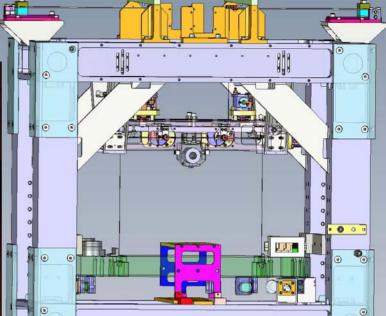


advancedligo

Large Triple Suspension, R3

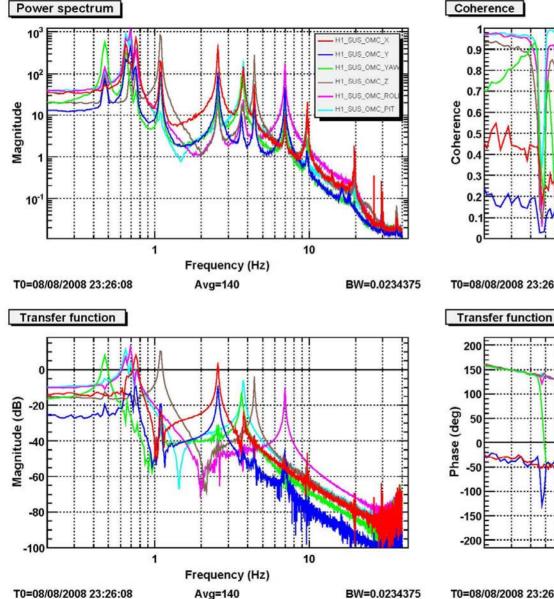
- triple pendulum
- OSEMs @ 3 masses
 - 6 @ top mass for damping of low frequency modes
 - 4 @ intermediate mass & mirrør for global control
- blades at top of suspension & at top mass
- stainless steel welded structure

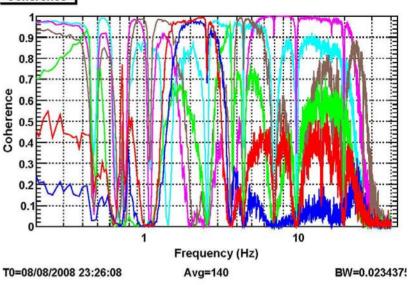


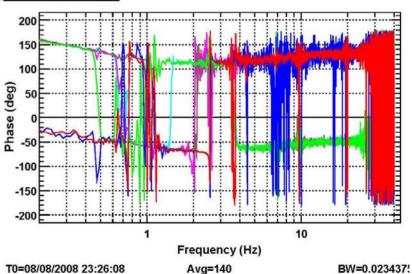


OMC SUS

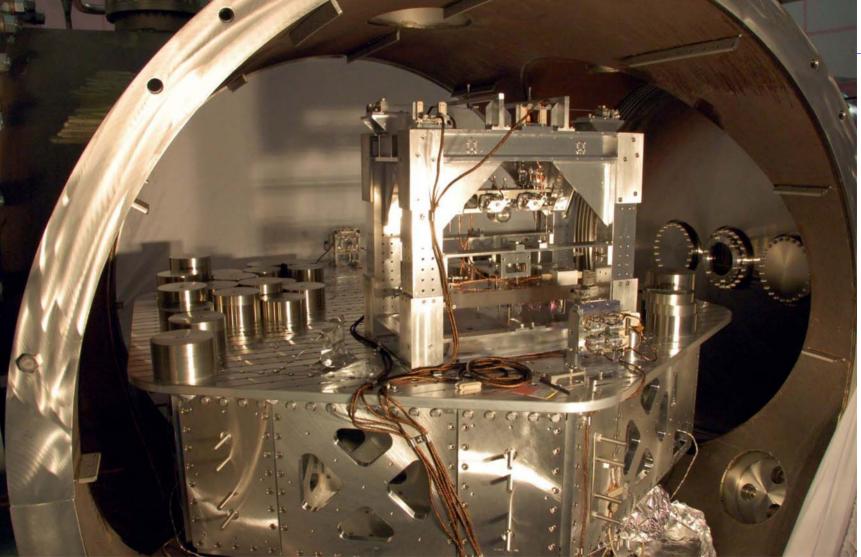
advancedligo LHO OMC SUS


LIGO


G080439



Preliminary LHO OMC SUS data.


adv

LLO OMC SUS

advancedligo

Maraging steel blade springs

- Large triple prototype blades and 2nd OMC blades fabricated earlier this year.
 - All out-of-spec.
 - Vendor reworked by shot peening.
 - Added plastic region at shot peened sites.
 - Shot peening only seems to work with thin blades
 - Accepted for eLIGO, will be retrofitted for aLIGO
 - Lessons learned:
 - need jigs during aging treatment
 - need tightened fabrication procedure
 - need clamps for inspection at the vendor facility
 - Another round of prototypes is needed to widen
 potential machine shop pool

24 Sept 08

Blade process

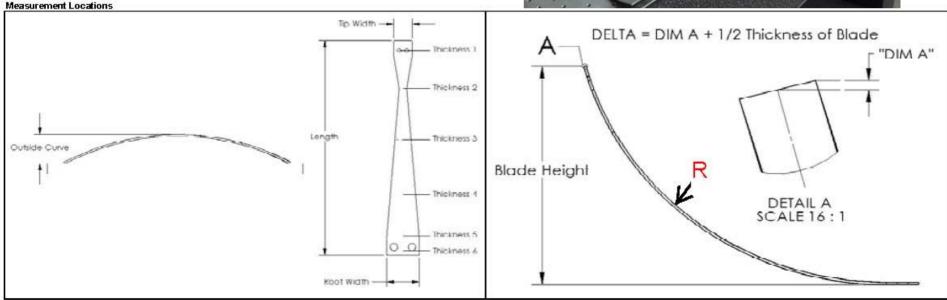
- <u>http://ilog.ligo-</u> wa.caltech.edu:7285/advligo/Suspensions/CantileverBla des
- Input gathered from many sources including GEO600, VIRGO, RAL, LIGO SEI
- Proposed maraging steel blade process:
 - Procure C-250 Maraging steel (annealed)
 - Machine & roll blades
 - Initial inspection of dimensions
 - Age harden at 435 deg C for 100 hours in a "comb" jig
 - Initial creep bake 150 deg C for 100 hours, under load
 - Characterization can be done now or after plating, also hardness testing

Blade process -continued

- Electroless Nickel Plating:
 - Specialized Pre-clean
 - Electroless Nickel Plate (low 5% phosphor bath) to a thickness of 0.5 um (microns)
 - Specialized Re-clean
 - Within 4 hours of the nickel plating, bake blades at 150 deg C for 12 hours
- Characterization if not done before nickel plating
- Clean and RGA bake, 150 deg C for 48 hours not under load
- Final Creep bake under load,150 deg C for a week

Electroless Nickel plating bath

080439-00



6

Blade characterization data

Blade Type: RM Upper Drawing Number: D020617-C Delta (see Descriptions Sheet): 0.074 Test Mass Used: 17.565

		Dimensions from Drawing
inches	2.560	Root Width
inches	1.000	Tip Width
inches	0.091	Thickness
inches	10.84	Length
inches	4.141	Blade Height

inches

Large triple prototype blade data

Initial Blade Characterization Test				values i	n inches							values in r	nillimeters			
Blade S/N	001	002	003	004	005	006	007	008	001	002	003	004	005	006	007	008
Root Width	2.559	2.558	2.558	2.561	2.559	2.559	2.560	2.559	65.00	64.97	64.97	65.05	65.00	65.00	65.02	65.00
Tip Width	1.002	1.000	1.000	1.000	1.000	1.000	1.000	1.000	25.45	25.40	25.40	25.40	25.40	25.40	25.40	25.40
Thickness 1	0.09295	0.09240	0.09305	0.09275	0.09410	0.09285	0.09360	0.09320		2.35	2.36	2.36	2.39	2.36	2.38	2.37
Thickness 2	0.09225	0.09255	0.09310	0.09230	0.09255	0.09260	0.09265	0.09230		2.35	2.36	2.34	2.35	2.35	2.35	2.34
Thickness 3	0.09235	0.09225	0.09215	0.09190	0.09185	0.09210	0.09175	0.09250		2.34	2.34	2.33	2.33	2.34	2.33	2.35
Thickness 4	0.09155	0.09220	0.09200	0.09185	0.09180	0.09255	0.09160	0.09200		2.34	2.34	2.33	2.33	2.35	2.33	2.34
Thickness 5	0.09115	0.09165	0.09150	0.09095	0.09115	0.09140	0.09135	0.09175		2.33	2.32	2.31	2.32	2.32	2.32	2.33
Thickness 6	0.09100	0.09140	0.09145	0.09105	0.09110	0.09130	0.09135	0.09170	2.31	2.32	2.32	2.31	2.31	2.32	2.32	2.33
Outside Curve	1.329		1.372	1.356	1.382	1.372	1.374	1.344	33.76	33.73	34.85	34.44	35.10	34.85	34.90	34.14
Length	10.841	10.840	10.842	10.841	10.842	10.842	10.840	10.842		275.34	275.39	275.36	275.39	275.39	275.34	275.39
Unloaded Height (Initial)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00
Loaded Height (Initial)		-4.277	-4.323	-4.340	-4.369	-4.293	-4.325	-4.345		-108.64	-109.80	-110.24	-110.97	-109.04	-109.86	-110.38
Unloaded Height (after 1 cycle)	-0.001	-0.003	-0.004	-0.001	-0.007	-0.003	-0.002	-0.015		-0.08	-0.10	-0.03	-0.18	-0.08	-0.05	-0.38
Loaded Height (after 1 cycle)	-4.362	-4.284	-4.324	-4.342	-4.379	-4.296	-4.316	-4.349		-108.81	-109.83	-110.29	-111.23	-109.12	-109.63	-110.46
Unloaded Height (after 2 cycles)		-0.003	-0.005	-0.001	-0.008	-0.002	-0.003	-0.011	-0.03	-0.08	-0.13	-0.03	-0.20	-0.05	-0.08	-0.28
Vertical Bounce Frequency (Hertz)	1.36	1.36	1.38	1.36	1.35	1.36	1.35	1.39		1.36		1.36	1.35	1.36	1.35	1.39
Blade Height	3.936	4.043	4.002	3.989	4.012	4.016	3.971	3.965	99.97	102.69	101.65	101.32	101.90	102.01	100.86	100.71
21																
Average Deflection	4.364	4.281	4.324	4.341	4.374	4.295	4.321	4.347	110.833	108.725	109.817	110.261	111.100	109.080	109.741	110.414
Change in Deflection after 1 cycle	0.001	0.003	0.004	0.001	0.007	0.003	0.002	0.015		0.076	0.102	0.025	0.178	0.076	0.051	0.381
Change in Deflection after 2 cycles	0.000		0.001	0.000	0.001	-0.001	0.001	-0.004		0.000	0.025	0.000	0.025	-0.025	0.025	-0.102
Offset from Vertical	-0.428	-0.238	-0.322	-0.352	-0.362	-0.279	-0.350	-0.382		-6.033	-8.166	-8.941	-9.195	-7.074	-8.877	-9.703
Corrected Offset from Vertica	-0.502	-0.312	-0,396	-0,426	-0.436	-0.353	-0.424	-0.456	-12.738	-7.912	-10.046	-10.820	-11.074	-8.954	-10.757	-11.582

Linearity Test

Linearity Test Mass 1 15.665 Linearity Test Mass 2 17.565 Linearity Test Mass 3 18.205	kg															
5	6			values ir	n inches			1				values in I	millimeters			
Blade S/N	001	002	003	004	005	006	007	008	001	002	003	004	005	006	007	008
Linearity Unloaded Height	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Linearity Loaded Height 1	3.873	3.790	3.818	3.856	3.905	3.831	3.809	3.844	98.37	96.27	96.98	97.94	99.19	97.31	96.75	97.64
Linearity Loaded Height 2	4.363	4.281	4.323	4.341	4.374	4.295	4.320	4.347	110.82	108.74	109.80	110.26	111.10	109.08	109.73	110.41
Linearity Loaded Height 3	4.604	4.453	4.552	4.558	4.551	4.392	4.411	4.502	116.94	113.11	115.62	115.77	115.60	111.56	112.04	114.35

Overload Test

Overload Test Mass	kg															
v		· · ·	values	in inches	 	values in millimeters										
Blade S/N							0	0	0	0	0	0	0	0		
Overload Test Unloaded Height							0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Test Mass Loaded Height							0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Overload Test Mass Loaded Height (0 minutes)							0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Overload Test Mass Loaded Height (15 minutes)							0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

NOTES:

1) Thickness measurements were difficult due to the curve of the blade. The most accurate measurements are those near the root (numbers 5 and 6)

2) The bounce frequency of the upper blades was found by timing 20 cycles. 40 cycles was used for the lower blades.

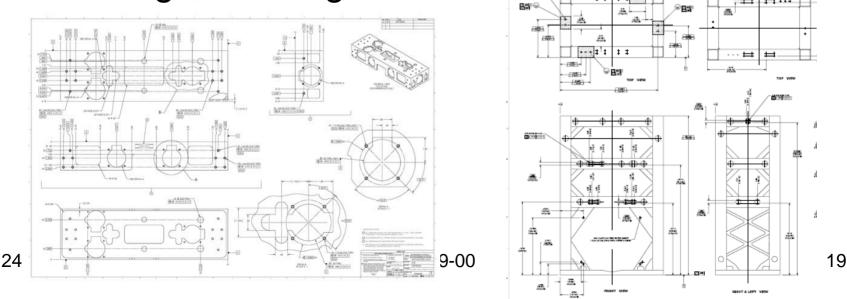
3) Deflection was measured to top of wire clamp. 0.315" (thickness of clamp) was added to this measurement to get the deflection to the top of the blade.

4) Measurements were taken using 17.58 kg due to the 15 degree angle of the upper wire when installed in the suspension. This is the mass of the suspension (18.20 kg) times the cosine of 15 degrees

Results

Blade Characterization Results

24 Sept 08


1010 - 101 - 100712000				values in i	nches			values in millimeters								
Blade S/N	001	002	003	004	005	006	007	008	001	002	003	004	005	006	007	008
Average Deflection	4.364	4.281	4.324	4.341	4.374	4.295	4.321	4.347	110.833	108.725	109.817	110.261	111.100	109.080	109.741	110.414
Change in Deflection (1 cycle)	0.001	0.003	0.004	0.001	0.007	0.003	0.002	0.015	0.025	0.076	0.102	0.025	0.178	0.076	0.051	0.38
Change in Deflection (2 cycles)	0.000	0.000	0.001	0.000	0.001	-0.001	0.001	-0.004	0.000	0.000	0.025	0.000	0.025	-0.025	0.025	-0.10
Corrected Offset from Vertica	-0.502	-0.312	-0.396	-0.426	-0.436	-0.353	-0.424	-0.456	-12.738	-7.912	-10.046	-10.820	-11.074	-8.954	-10.757	-11.58

Conclusions

- SUS team benefits from sharing ideas, designs & lessons learned on a weekly basis.
- Development work through the end of FY2009, in parallel with Project work
- Drawings, drawings, reviews, reviews.

