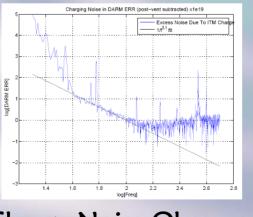
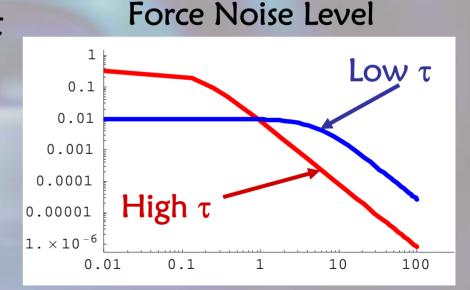
Charging Overview

Gregg Harry on behalf of the Charging Working Group *LSC/Virgo Meeting Amsterdam September 25, 2008*

G080448-00-R



Markov Theory of Gaussian Noise


 $S_F(f) \approx 2 < F^2 > /(\pi \tau (1/\tau^2 + (2 \pi f)^2))$ $<F^2> = Q^2/(4d^2)$

February 2006 LLO Event

- ITMy hits earthquake stop
- Low frequency noise $\sim f^{-3}$

Charge Noise Observed at LLO

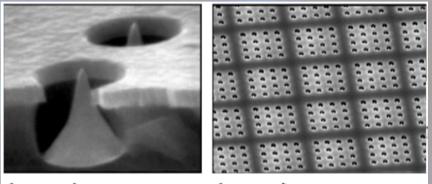
For $f > 1 / (2 \pi \tau)$ amplitude noise $\sim f^3$

Possible Mitigation Strategies

 $1 \, \mathrm{um}$

Ultraviolet Light

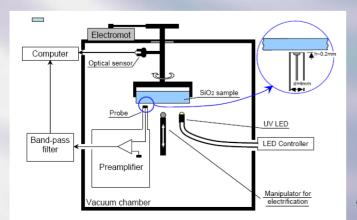
Directly applied to optic Indirectly used to liberate charge from nearby surfaces


Ion Gun

Shoot low energy ions near optic

Viton Tipped Earthquake Stop

Spindt Cathode Ion Source


10 µm

Choice of Materials Silica-tipped earthquake stops Carbon nanotube First Contact Conducting coatings/surfaces

Progress on Parameter Measuring

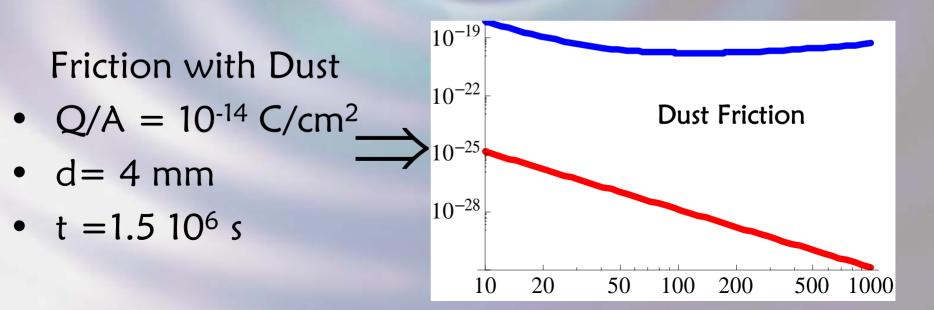
Correlation Time τ

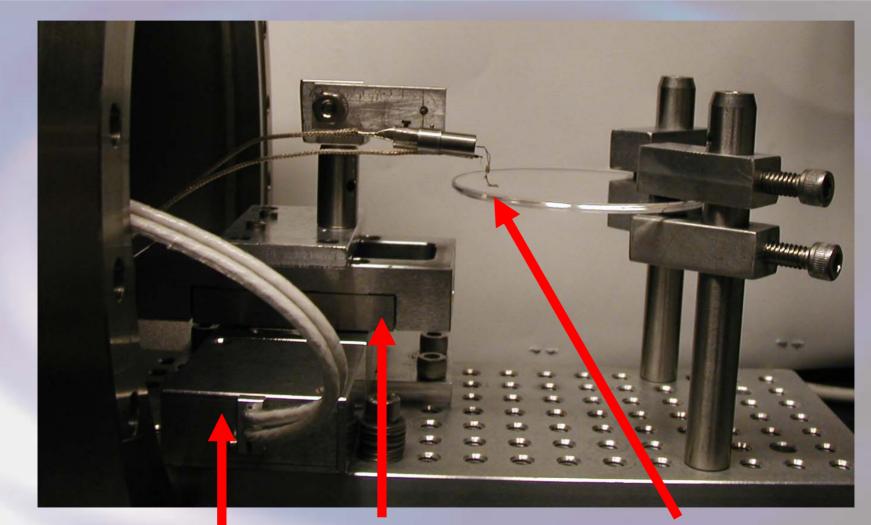
- Dirty Optic Trinity
 170 days (1.5 10⁶ s)
- Clean Optic MSU at least 8000 hours (2.9 10⁷ s) Distance d
- ESD 3 mm?
- Earthquake Stop Shaft 4 mm
- Earthquake Stop Tip 0.5 mm

Charging Q

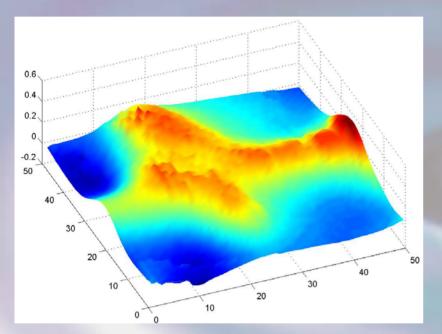
- Viton contact MSU at least 5 10⁸ e⁻ in 5 mm contact circle
- Silica contact MSU
 5 10⁶ e⁻ in 5 mm contact circle
- Dust friction MSU
 - ~ 10⁵ e⁻/cm² (10⁻¹⁴ C/cm²)
- First Contact MSU, Trinity Regular: at least 10⁹ e⁻/cm² Carbon Nanotube: 10⁸–10⁹ e⁻/cm²

Moscow Experiment


Adv LIGO Noise from First Contact


AdvLIGO Noise Scenarios

Contact with Silica Earthquake Stop 10⁴ below expected sensitivity at 100 Hz Charging from Cosmic Rays 10¹⁶ below expected sensitivity at 100 Hz

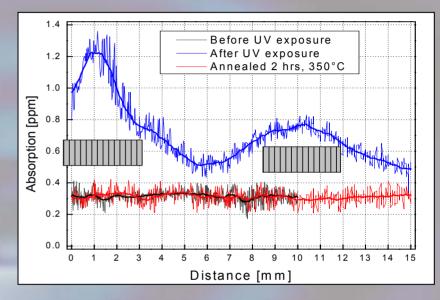

Two-Dimensional Charge Mapping Setup at Trinity

Orthogonal, in-vacuum motorized stages

Besocke Kelvin probe

Recent Results from Trinity

Positive Charging From Viton


- Positive and negative charge on same sample
 - Ethanol wash negative
 - Viton positive "cross"
- UV removes only positive
- Successive applications of viton
 ⇒ smaller time constants
 - Conductive film left?
- Carbon Nanotube First Contact leaves ~ 2 × 10⁸ e⁻/cm²
 - Improvement; still troubling
- Plan to investigate τ vs surface conditions

Stanford Status and Plans

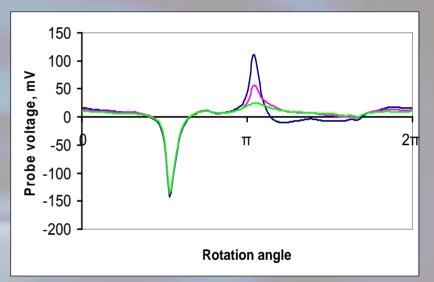
Mitigation with UV

- Annealing repairs UV damage to coating (2 hours /350° C)
- First Contact partially shields coating from UV

Seismic noise coupling through charged stop

- Must be < 10⁻⁶ C/m² on stop tip to avoid excess noise
- Plans to investigate conductive coating

Conductive Coating

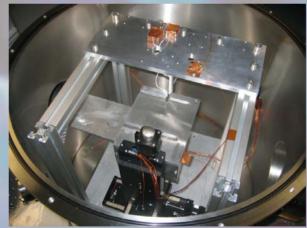

- $\sim G\Omega/sq$ sufficient
- Could move charge away from coating to allow UV to act
- Plan to study materials

Recent Results at Moscow

- UV mitigation of positive charge
 - $-\lambda = 265 \text{ nm}$
 - Intensity ~ 20 μ W/cm²
 - Negative charge responds but nearby positive increases
 - $|Q| < 10^6 \text{ e}/\text{cm}^2$, charge increases with UV
- Friction charge from pumpdown dust
 - No more than 10⁵ e⁻/cm²
 - Outgassing may play a role

UV Mitigation of Positive Charge

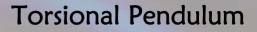
- Carbon Nanotube First
 Contact received
 - Check Trinity result
 - Some question of First Contact type at Trinity

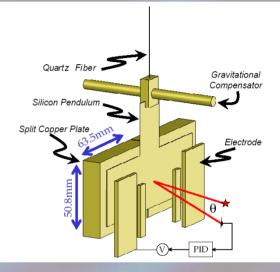


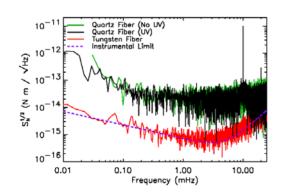
Glasgow Status

A Kelvin probe experimental chamber has been commissioned, including:

- a 3-axis manipulation stage with +/-50mm travel
- a Besocke Delta Phi Kelvin probe (identical to Trinity University)
- a sample loading chamber to minimise pumping downtime
- the possibility of UV discharge and electron irradiation

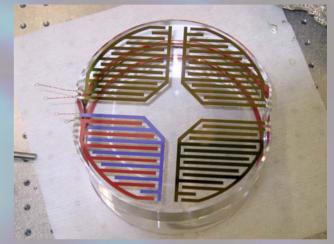



- \bullet we plan to study the effect of τ on sample cleanliness
- the surface conductivity of different varieties of FirstContact
- the force noise due to charge distributions using a torsion balance in the same vacuum tank



Plans for Direct Measurement

UWashington torsional pendulum to directly measure charge noise
Noise vs earthquake stop separation vs charge amount vs silica cleanliness
Observe in vacuum noise improvement with UV

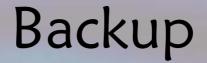

• Build on LISA experience

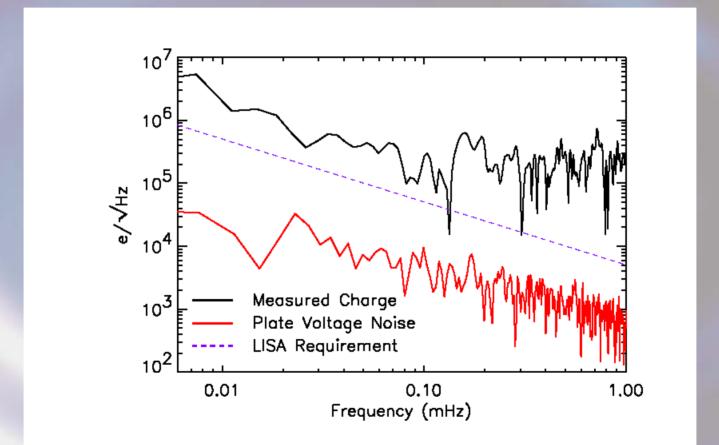
- Minimal changes needed to apparatus
- •UWashington plans to apply for LSC membership in December

Floating Pendulum Shows Excess Noise

Modeling and Theory Needs

- Modeling: Finite Element and Analytical
 - Electro-static drive
 - actuation, gold coating, calibration, dynamic range, etc.
 - GEO ESD charging event
 - DC forces, engineering concerns
 - Cosmic ray charging GEANT?

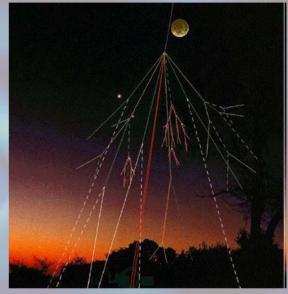

- Theoretical work under consideration at UTexas Brownsville (Rakhmanov)
 - Two charged dielectrics in Markov model
 - Moving ground planes in Markov model
 - Noise from dipole charges
 - Color centers effects on charging and discharging



Future Experimental Plans

- Further study of parameters
 - Charging from dust friction
 - Charging from removal of First Contact
 - Charging from contact with ESD (as happened in GEO)
 - Relationship of cleanliness with correlation time
- Measurement of noise from charging
 - UWash, ANU?, TNI?, LASTI?
- Cleanliness studies
 - Can First Contact charge be removed in a clean way?
- Further Development of mitigation techniques
 - Indirect UV
 - Conductive coatings
 - lon gun
- Study non-Gaussian noise including cosmic rays




Other Charging Issues

Potential Problems

Direct coupling to noisy environment SUS Support Structure Environmental electric fields Non-Gaussian Noise Cosmic Rays Other Charging Events Charge Motions

Cosmic Ray Shower

Interactions with Electrostatic Drive Noise Effects on Actuation More Complexity in Gaussian Noise Dipoles Two Dielectric Surfaces