Parametric Instability

Comparison between Mesa beams and Gaussian beams And
 Modal misalignment suppression for Advanced LIGO

Slawek Gras

The University of Western Australia

Comparison between Mesa beams and Gaussian beams

Cavity types

Mesa beam

Gaussian Beam

$$
D=4 \sqrt{\frac{L}{k}} \quad \begin{gathered}
\text { Diffraction losses } \\
\sigma=19.5 \mathrm{ppm}
\end{gathered} \quad \mathrm{R}=2050.6 \mathrm{~m}
$$

Cavity length $L=4000 \mathrm{~m} \quad \mathrm{~T}_{\text {ITM }}=2.3 \% \quad \mathrm{~T}_{\text {ETM }}=5.0 \mathrm{ppm}$

Test mass: $\mathrm{r}=0.16 \mathrm{~m}, \mathrm{t}=0.13 \mathrm{~m}$, Sapphire M -axis, wedge 0.5 deg

Parametric Instability-Simple cavity

$$
R_{j}=\frac{4 P Q_{m_{j}}}{M c L \omega_{m j}^{2}}\left(\frac{Q_{1 i} \Lambda_{1 i}}{1+\Delta \omega_{1 i}^{2} / \delta_{1 i}^{2}}-\frac{Q_{1 a i} \Lambda_{1 a i}}{1+\Delta \omega_{1 a i}^{2} / \delta_{1 a i}^{2}}\right)
$$

Fixed parameters:

- circulating power $\mathrm{P}=830 \mathrm{~kW}$
- acoustic mode Q-factor $Q_{m}=10^{7}$
- mass of the test mass $M=40 \mathrm{~kg}$

2 possible processes:
$\omega_{1}-\omega_{0}=\sim \omega_{m}:$ damping $\rightarrow \Delta \omega_{a} \equiv \omega_{1}-\omega_{0}-\omega_{m}$
$\omega_{0}-\omega_{1}=\sim \omega_{m} \quad:$ excitation $\rightarrow \Delta \omega \equiv \omega_{0}-\omega_{1}-\omega_{m}$
optical $\omega_{0,1}$ and acoustic ω_{m} frequencies must be determined
\rightarrow cavity structure and acoustic mode calculation required

Cavity structure - Mirror shape

$$
\begin{aligned}
& k h^{F}(\vec{r})=\operatorname{Arg}(u(D, \vec{r})) \\
& h^{F}(\vec{r})+h^{C}(\vec{r})=\frac{r^{2}}{L}
\end{aligned}
$$

Only near concentric cavities have small tilt instability thus only this cavity type is considered in Pl analysis.

Cavity structure - Eigenvectors

The Fresnel-Kirchhoff propagation equation:

$$
E_{2}\left(\vec{r}_{2}, L\right)=-\frac{i k}{2 \pi} \iint_{S} G\left(\vec{r}_{2}, \vec{r}_{1}\right) E_{1}\left(\vec{r}_{1}, 0\right) F(\theta) d^{2} \vec{r}_{1}
$$

For a fine meshgrid of the mirror surface the electric field E across element area $d^{2} r$ becomes quasi-steady. The above equation can be written as an eigenequation.

$$
\begin{gathered}
\gamma E_{1}=M_{21} M_{12} E_{1} \\
M_{12}=\frac{i k}{2 \pi} \iint_{S} G\left(\vec{r}_{2}, \vec{r}_{1}\right) d^{2} \vec{r}_{1} \quad G-\text { propagation kernel }
\end{gathered}
$$

Cavity structure - Gaussian beam

near concentric cavity (Gaussian)

Cavity structure - Mesa beam

near concentric cavity (Mesa)

Near concentric cavity was obtained from near planar cavity using duality relation

Duality relation:
$\gamma^{C}=e^{-4 i k L}\left(\gamma^{F}\right)^{*} \rightarrow \Delta v^{C}=M \cdot F S R-\Delta v^{F} \quad$ with $\quad M=1$

Acoustic modes analysis

$$
M_{a b} \frac{\partial^{2} u_{i}^{b}}{\partial t^{2}}+K_{a i b k} u_{k}^{b}=0
$$

Global stiffness matrix:

$$
K_{\text {aibk }}=\int_{S} C_{i j k l} \frac{\partial \varphi^{a}(\vec{\xi})}{\partial \xi_{j}} \frac{\partial \varphi^{b}(\vec{\xi})}{\partial \xi_{l}} d V
$$

C - compliance tensor (due to the crystal symmetries can be reduced to the 6x6 matrix
For sapphire M-axis:
$C=\left(\begin{array}{cccccc}498.1 & & & & & \\ 110.9 & 496.8 & & & \text { Symmetric } & \\ 110.9 & 163.6 & 496.8 & & & \\ 0 & 0 & 0 & 153.1 & & \\ 0 & -23.5 & 23.5 & 0 & 147.4 & \\ 0 & 0 & 0 & -23.5 & 0 & 147.4\end{array}\right)$

Acoustic modes frequencies

acoustic modes M -axis $\mathrm{Al}_{2} \mathrm{O}_{3}$

800 modes: $8.9 \mathrm{kHz}-114.6 \mathrm{kHz}$

Diffraction losses

$$
\sigma_{p}=1-\left|\gamma_{p}\right|^{2}
$$

Optical modes Q-factors

$$
Q_{p}=\frac{-2 \pi v_{p}}{F S R \ln \left[\left(1-\sigma_{p}\right) R_{1} R_{2}\right]}
$$

Q-factors of the mesa TEMs are close to the coupling limit. Diffraction losses have substantially smaller effect on Q in comparison to the Gaussian cavity.

Overlapping parameter

Parametric gain R is also set by the overlapping parameter Λ. The spatial match between HOM and fundamental mode must be conserved.

$$
\Lambda_{i j}=\frac{V\left(\int\left(\vec{E}^{0} \circ \vec{E}^{i}\right) \mu^{j}{ }_{\perp} d \vec{r}_{\perp}\right)^{2}}{\int\left|\vec{E}^{0}\right|^{2} d \vec{r}_{\perp} \int\left|\vec{E}^{i}\right|^{2} d \vec{r}_{\perp} \int\left|\vec{\mu}^{j}\right|^{2} d \vec{r}}
$$

- spatial match is defined as an integral $\int\left(\vec{E}^{0} \circ \vec{E}^{\text {HOM }}\right) \mu_{\perp} d \vec{r}_{\perp} \quad$ The higher the integral value the better is a match between modes.
- V / $\int|\vec{\mu}|^{2} d \vec{r}$ is a mass ratio of the mass of the test mass and the effective mass of the acoustic mode. The effective mass refers to the excitation susceptibility of an acoustic mode.

Optimal overlapping parameter

$\Lambda_{\text {MAX }} \rightarrow$ rotation of the acoustic mode on the optical mode

TEM 01

TEM 18

TEM 02

TEM 10

Overlapping parameter

Λ selection criteria: $\Lambda \geq \omega_{m}^{2} / \vartheta Q_{m}, \vartheta=\frac{4 P Q_{o}}{m L c}$ $-\Lambda_{\text {Mesa }}>\Lambda_{\text {Gaussian }}: 772$
$-\Lambda_{\text {Gaussian }}>\Lambda_{\text {Mesa }}: 404$
$\longrightarrow \sim 2$ times more overlaps for mesa beam
(only opto-acoustic interactions with such \wedge can be dangerous)

R-value for Gaussian cavity

R-value vs. $\Delta \omega$ uncertainty

R-value vs. $\Delta \omega$ uncertainty

85.134 kHz

R-value for Gaussian cavity

possible unstable modes: 18

R-value for mesa cavity

possible unstable modes: 46

Conclusions

-Diffraction losses of the mesa HOMs lower than for the Gaussian HOMs by a factor of ~ 15.
-HOMs Q-factor in the mesa cavity set by coupling losses.

- The mesa cavity has ~ 2 times more overlaps with value bigger than for Gaussian cavity.
-The mesa cavity is ~ 2.6 times more susceptible to parametric instability than the Gaussian cavity.

Modal misalignment suppression for Adv. LIGO

Parametric Instability

$$
R=\frac{2 P Q_{m} \Lambda \omega_{s}}{M c L \omega_{m}^{2}} \operatorname{Re}\left[\frac{1}{\left(1+\chi^{2}\right)}\left(\frac{-1}{i \Delta \omega+\lambda_{1}}+\frac{-\chi^{2}}{i \Delta \omega+\lambda_{2}}\right)\right]
$$

Optical mode frequency:

$$
\omega_{s}=\frac{1}{2}\left(\omega_{s 1}+\omega_{s 2}\right)
$$

Arm tuning parameter:

$$
d=\frac{1}{2}\left(\omega_{s 1}-\omega_{s 2}\right)
$$

IFO configurations:

1) IFO with PRM and symmetrical arms
2) IFO with PRM and asymmetrical arms
3) IFO with PRM, SRM and symmetrical arms
4) IFO with PRM, SRM and asymmetrical arms

Model limitations: PRC unstable, no diffraction losses allowed

PARAMETERS

Wavelength $=1.064 \mathrm{e}-06 \mathrm{~m}$
Arm length $=3994.75 \mathrm{~m}$
Mirror radius $=0.17 \mathrm{~m}$ (coated 0.16 .8 m$)$
Optical modes: up to order 12
Total number of optical modes $=60$
Estimated numerically
Axial mode order = 5
Total number of acoustic modes $=5507$
(range: $5.8 \mathrm{kHz}-140 \mathrm{kHz}$)
RoC step: $\mathbf{0 . 1 m}$

$$
\begin{aligned}
& \text { RoC_ITM }=1971 \mathrm{~m} \\
& \text { RoC_ETM }=2191 \mathrm{~m}
\end{aligned}
$$

IFO with PRM

IFO with PRM and SRM

Optical mode orientation

Elastic modes

Coating rotation

does not work

work $\rightarrow \wedge$ reduced

Modal misalignment -IFO with PRM

Modal misalignment -IFO with PRM and SRM

Conclusions

-Arm asymmetry substantially lower parametric gain, R ~ 10-20 in large RoC range.
-Modal misalignment has some effect on reduction of R-value.

- Further R reduction expected from diffraction losses (only for HOMs above 3 rd order), unfortunately we do not have a mathematical model for it.

