LIGO-G080542-00-Z

Parametric Instability

Comparison between Mesa beams and Gaussian beams And Modal misalignment suppression for Advanced LIGO

Slawek Gras

The University of Western Australia

Comparison between Mesa beams and Gaussian beams

Test mass: r = 0.16 m, t = 0.13 m, Sapphire M-axis, wedge 0.5deg

$$R_{j} = \frac{4PQ_{mj}}{McL\omega_{mj}^{2}} \left(\frac{Q_{1i}\Lambda_{1i}}{1 + \Delta\omega_{1i}^{2} / \delta_{1i}^{2}} - \frac{Q_{1ai}\Lambda_{1ai}}{1 + \Delta\omega_{1ai}^{2} / \delta_{1ai}^{2}} \right)$$

Fixed parameters:

- circulating power P = 830 kW
- acoustic mode Q-factor $Q_m = 10^7$
- mass of the test mass M = 40 kg

2 possible processes:

A - overlapping parameter (optical and acoustic mode shapes must be known) Q_1, δ_1 – optical Q-factor and half linewidth of the TEMs (diffraction losses should be taken into account)

 $\omega_1 - \omega_0 = \sim \omega_m$: damping $\rightarrow \Delta \omega_a \equiv \omega_1 - \omega_0 - \omega_m$

 $\omega_0 - \omega_1 = \sim \omega_m$: excitation $\rightarrow \Delta \omega \equiv \omega_0 - \omega_1 - \omega_m$

optical $\omega_{0,1}$ and acoustic ω_m frequencies must be determined \rightarrow cavity structure and acoustic mode calculation required

The Fresnel-Kirchhoff propagation equation:

$$E_{2}(\vec{r}_{2},L) = -\frac{ik}{2\pi} \iint_{S} G(\vec{r}_{2},\vec{r}_{1}) E_{1}(\vec{r}_{1},0) F(\theta) d^{2}\vec{r}_{1}$$

For a fine meshgrid of the mirror surface the electric field E across element area d²r becomes quasi-steady. The above equation can be written as an eigenequation.

$$\gamma E_1 = M_{21} M_{12} E_1$$

$$M_{12} = \frac{ik}{2\pi} \iint_{S} G(\vec{r}_{2}, \vec{r}_{1}) d^{2}\vec{r}_{1} \qquad \text{G-propagation kernel}$$

$$M_{ab} \frac{\partial^2 u_i^b}{\partial t^2} + K_{aibk} u_k^b = 0$$

Global stiffness matrix:

$$K_{aibk} = \int_{S} C_{ijkl} \frac{\partial \varphi^{a}(\vec{\xi})}{\partial \xi_{j}} \frac{\partial \varphi^{b}(\vec{\xi})}{\partial \xi_{l}} dV$$

C – compliance tensor (due to the crystal symmetries can be reduced to the 6x6 matrix **For sapphire M-axis:**

$$C = \begin{pmatrix} 498.1 & & \\ 110.9 & 496.8 & & \\ 110.9 & 163.6 & 496.8 & \\ 0 & 0 & 0 & 153.1 & \\ 0 & -23.5 & 23.5 & 0 & 147.4 & \\ 0 & 0 & 0 & -23.5 & 0 & 147.4 & \\ \end{pmatrix}$$

LSC-Virgo meeting, Amsterdam 20-26 Sep 2008

Global mass matrix:

$$M_{ab} = \rho \int_{S} \varphi^{a} \varphi^{b} dV$$

assuming $u = \mu_i \cos \omega_i t$ we obtain an eigenequation

$$\left|K-\omega_i^2 M\right|=0$$

Solved with ANSYS - 140k nodes

800 modes: 8.9 kHz - 114.6 kHz

Diffraction losses

Optical modes Q-factors

Q-factors of the mesa TEMs are close to the coupling limit. Diffraction losses have substantially smaller effect on Q in comparison to the Gaussian cavity.

Parametric gain R is also set by the overlapping parameter Λ . The spatial match between HOM and fundamental mode must be conserved.

$$\Lambda_{ij} = \frac{V\left(\int (\vec{E}^0 \circ \vec{E}^i) \mu^j \,_{\perp} d\vec{r}_{\perp}\right)^2}{\int \left|\vec{E}^0\right|^2 d\vec{r}_{\perp} \int \left|\vec{E}^i\right|^2 d\vec{r}_{\perp} \int \left|\vec{\mu}^j\right|^2 d\vec{r}}$$

- spatial match is defined as an integral $\int (\vec{E}^0 \circ \vec{E}^{HOM}) \mu_{\perp} d\vec{r}_{\perp}$ The higher the integral value the better is a match between modes.

 $-V/\int |\vec{\mu}|^2 d\vec{r}$ is a mass ratio of the mass of the test mass and the effective mass of the acoustic mode. The effective mass refers to the excitation susceptibility of an acoustic mode.

LSC-Virgo meeting, Amsterdam 20-26 Sep 2008

possible unstable modes: 18

possible unstable modes: 46

•Diffraction losses of the mesa HOMs lower than for the Gaussian HOMs by a factor of ~ 15.

•HOMs Q-factor in the mesa cavity set by coupling losses.

• The mesa cavity has ~2 times more overlaps with value bigger than for Gaussian cavity.

•The mesa cavity is ~2.6 times more susceptible to parametric instability than the Gaussian cavity.

Modal misalignment suppression for Adv. LIGO

LSC-Virgo meeting, Amsterdam 20-26 Sep 2008

$$R = \frac{2PQ_{m}\Lambda\omega_{s}}{McL\omega_{m}^{2}}\operatorname{Re}\left[\frac{1}{(1+\chi^{2})}\left(\frac{-1}{i\Delta\omega+\lambda_{1}}+\frac{-\chi^{2}}{i\Delta\omega+\lambda_{2}}\right)\right]$$

Optical mode frequency:

Arm tuning parameter:

$$\omega_{s} = \frac{1}{2} (\omega_{s1} + \omega_{s2})$$

$$d=\frac{1}{2}(\omega_{s1}-\omega_{s2})$$

IFO configurations:

- 1) IFO with PRM and symmetrical arms
- 2) IFO with PRM and asymmetrical arms
- 3) IFO with PRM, SRM and symmetrical arms
- 4) IFO with PRM, SRM and asymmetrical arms

Model limitations: PRC unstable, no diffraction losses allowed

T_ITM = 1.4% T_ETM = 5ppm T_PRM = 2.5%

SRM = 20% δ = 11 deg (see T070247-01) Wavelength = 1.064e-06 m Arm length = 3994.75 m Mirror radius = 0.17 m (coated 0.16.8 m) **Optical modes: up to order 12** Total number of optical modes = 60 Estimated numerically Axial mode order = 5Total number of acoustic modes = 5507 (range: 5.8 kHz – 140 kHz) RoC step: 0.1m

RoC_ITM = 1971 m RoC_ETM = 2191 m

IFO with **PRM**

IFO with PRM and SRM

Optical mode orientation

LSC-Virgo meeting, Amsterdam 20-26 Sep 2008

Coating rotation

LSC-Virgo meeting, Amsterdam 20-26 Sep 2008

-Arm asymmetry substantially lower parametric gain, R ~ 10-20 in large RoC range.

- -Modal misalignment has some effect on reduction of R- value.
- Further R reduction expected from diffraction losses (only for HOMs above 3rd order), unfortunately we do not have a mathematical model for it.