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Comparison between 
Mesa beams and Gaussian beams
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Mesa beam Gaussian Beam

k
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Cavity length L = 4000 m TITM=2.3%  TETM =5.0 ppm

Cavity types

R = 2050.6 m
Diffraction losses
σ = 19.5 ppm

Test mass: r = 0.16 m, t = 0.13 m, Sapphire M-axis, wedge 0.5deg 
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Parametric Instability- Simple cavity

Fixed parameters:

- circulating power P = 830 kW
- acoustic mode Q-factor Qm = 107

- mass of the test mass M = 40 kg

ω1-ω0 = ~ ωm : damping → Δωa≡ ω1-ω0-ωm

ω0-ω1 = ~ ωm : excitation → Δω ≡ ω0-ω1-ωm

2 possible processes:

optical ω0,1 and acoustic ωm frequencies must be determined     
→ cavity structure and acoustic mode calculation required

Λ - overlapping parameter
(optical and acoustic mode shapes must 
be known)
Q1 ,δ1 – optical Q-factor and half line-
width of the TEMs
(diffraction losses should be taken into 
account)
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Cavity structure - Mirror shape
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Only near concentric cavities 
have small tilt instability thus 
only this cavity type is 
considered in PI analysis.
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Cavity structure - Eigenvectors
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G – propagation kernel

The Fresnel-Kirchhoff propagation equation:

For a fine meshgrid of the mirror surface the electric field E across element area d2r 
becomes quasi-steady. The above equation can be written as an eigenequation.
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Cavity structure – Gaussian beam
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Cavity structure – Mesa beam

( )∗−= FikLC e γγ 4 1=Δ−⋅=Δ MwithFSRM FC νν
Duality relation:

Near concentric 
cavity was 
obtained from 
near planar 
cavity using 
duality relation
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→
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Acoustic modes analysis
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Global stiffness matrix: Global mass matrix:

C – compliance tensor (due to the crystal symmetries can 
be reduced to the 6x6 matrix 
For sapphire M-axis:
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4.14705.23000
4.14705.235.230

1.153000
8.4966.1639.110

8.4969.110
1.498

C

Symmetric

assuming
we obtain an eigenequation

Solved with ANSYS – 140k nodes
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Acoustic modes frequencies

800 modes:   8.9 kHz – 114.6 kHz
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Diffraction losses
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Optical modes Q-factors

Q-factors of the mesa TEMs are close to the coupling limit. Diffraction losses 
have substantially smaller effect on Q in comparison to the Gaussian cavity.
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- spatial match is defined as an integral                        The higher the 
integral value the better is a match between modes.
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Overlapping parameter

Parametric gain R is also set by the overlapping parameter Λ. The spatial match 
between HOM and fundamental mode must be conserved. 

∫ ⊥⊥ rdEE HOM rr
o

r
μ)( 0

- is a mass ratio of the mass of the test mass and the effective mass 
of the acoustic mode. The effective mass refers to the excitation susceptibility of 
an acoustic mode.

rdV rr 2
/ ∫ μ
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Optimal overlapping parameter 

ΛMAX  → rotation of the acoustic mode on the optical mode

TEM 01 TEM 02

TEM 10TEM 18
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=ϑ,Λ selection criteria:

Overlapping parameter

-ΛMesa > ΛGaussian : 772
-ΛGaussian > ΛMesa : 404
→ ~2 times more overlaps for mesa beam
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(only opto-acoustic interactions with 
such Λ can be dangerous)
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R-value for Gaussian cavity

unstable modes
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R-value vs. Δω uncertainty
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R-value vs. Δω uncertainty
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R-value for Gaussian cavity

possible unstable modes: 18
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R-value for mesa cavity

possible unstable modes: 46
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Conclusions

•Diffraction losses of the mesa HOMs lower than for the 
Gaussian HOMs by a factor of ~ 15.

•HOMs Q-factor in the mesa cavity set by coupling 
losses.

• The mesa cavity has  ~2 times more overlaps with 
value bigger than  for Gaussian cavity.

•The mesa cavity is ~2.6 times more susceptible to 
parametric instability than the Gaussian cavity.
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Modal misalignment 
suppression for Adv. LIGO
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Optical mode frequency: Arm tuning parameter:

IFO configurations:

1) IFO with PRM and symmetrical arms
2) IFO with PRM and asymmetrical arms
3) IFO with PRM, SRM and symmetrical arms
4) IFO with PRM, SRM and asymmetrical arms

Model limitations: PRC unstable, no diffraction losses allowed

Parametric Instability



T_ITM = 1.4%
T_ETM = 5ppm
T_PRM = 2.5%

SRM = 20%
δ = 11 deg
(see T070247-01)
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Wavelength = 1.064e-06 m
Arm length = 3994.75 m
Mirror radius = 0.17 m (coated 0.16.8 m)
Optical modes: up to order 12
Total number of optical modes = 60
Estimated  numerically  
Axial mode order  = 5
Total number of acoustic modes = 5507

(range: 5.8 kHz – 140 kHz)
RoC step: 0.1m

PARAMETERS

RoC_ITM = 1971 m 
RoC_ETM = 2191 m
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IFO with PRM
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IFO with PRM and SRM
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19287 Hz 19476 Hz 20438 Hz 20514 Hz

HOMsa b

Elastic modes

Optical mode orientation
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45o

Coating rotation

does not work work →Λ reduced



sgras@cyllene.uwa.edu.auLSC-Virgo meeting, Amsterdam 20-26 Sep 2008

Modal misalignment –IFO with PRM
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Modal misalignment –IFO with PRM and SRM



sgras@cyllene.uwa.edu.auLSC-Virgo meeting, Amsterdam 20-26 Sep 2008

Conclusions

-Arm asymmetry substantially lower parametric  
gain, R ~ 10-20 in large RoC range.

-Modal misalignment has some effect on reduction   
of  R- value.

- Further R reduction expected from diffraction  
losses (only for HOMs above 3rd order),   
unfortunately  we do not have a mathematical   
model for it.


