Enhanced LIGO

Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008

LIGO-G080583-00-D

Gravitational Wave Sources

- spinning neutron star
 - remnant from supernova in year 1054
- gw frequency $v_{gw} = 59.8 \text{ Hz}$
- spin down due to:
 - electromagnetic braking
 - GW emission?
- BURSTS (GRBs, supernovae)
- STOCHASTIC BACKGROUND (from the Big Bang)
- COALESCING BINARIES (NS/NS, NS/BH, BH/BH)

Ripples in Space-time

A Michelson type interferometer is the ideal tool to measure GWs.

Livingston (L1 = 4 km)

Gravitational Wave Detectors

LIGO

LIGO Sensitivity

- Motivation for eLIGO:
- 2x increase in sensitivity
- \rightarrow ~ 8x inc. in detection rate

Changes:

- 4x more laser power
- New GW readout scheme
- Upgraded Input Optics
- Prototype of advanced seismic isolation
- Upgraded Thermal Compensation System

35 Watt Laser

LZH (Germany) built us a custom 35W laser

- 2W NPRO amplified by a 4 rod Nd:YVO4
- lambda = 1064 nm
- frequency stabilized by reference cavity

Laser produces beautiful TEM00 Mode

Gravitational Wave Readout

Hardware:Output Mode Cleaneradvanced seismic isolation

Improves:

- shot noise
- laser intensity noise

LIGO

Mode Cleaner – 3 mirror cavity filters out higher order modes delivered from laser

Mode Matching Telescope – 3 spherical mirrors deliver correct beam size and shape to interferometer

1

cientific Collaboration

Farad

isolat

Faraday Isolator

LIGO-G080583-00-D

Status Today

Summary

- Enhanced LIGO hardware upgrade nearly complete
- Challenges we still face:
 - » Angular instabilities from higher radiation pressure
 - » Alignment control of Output Mode Cleaner
 - » Blasting for oil in Louisiana requires night-time work
- Much noise hunting to do!
- Expect the detection rate for BH/BH to increase from 1/100 years to 1/9 years (uncertain by 2 orders of magnitude in either direction)
- Enhanced LIGO science run to begin Spring 2009

Gravitational Waves

	Electromagnetic waves	Gravitational waves
Source:	moving charge	moving mass
Speed:	С	С
Wavelen	gth: <mark>c/f</mark>	c/f
Solution:	$\stackrel{f}{E} \left(\stackrel{f}{r}, t \right) \sim \frac{\mu_0}{4\pi r} \left[\hat{r} \times \left(\hat{r} \times \stackrel{f}{p} \right) \right]$	$h_{\mu\nu}(\omega,t) = \frac{2G}{rc^4} \ddot{I}_{\mu\nu}(\omega,t)$
Polarizati	ions: σ ⁺ , σ ⁻	h+, h ^x
Particle:	photon	graviton
Spin:	1	2
$ \rightarrow $		

RF vs. DC Readout

Noise Budget

