LIGO-G080593-00-0

LISA and LISA Pathfinder

space-based laser interferometry towards gravitational wave astronomy

Felipe Guzmán Cervantes

Albert-Einstein-Institut Hannover

Caltech, Pasadena, 10/27/2008

LISA Group AEI Hannover, Germany

Leibniz Universität Hannove

http://www.aei-hannover.de/

Historical Background: theoretical formulation

• 1916. Albert Einstein proposed a new model for Gravitation: General Theory of Relativity.

- Mass determines space curvature.
- Space curvature determines the movement of the masses.
- Accelerated masses \Rightarrow Gravitational Waves.

Historical Background: experimental pioneers

 1960s. Joseph Weber gives first steps for possible experiments: Resonant Bar Detectors sensitivity limited to bar mechanic resonance active follow-on projects (EXPLORER, AURIGA, MINIGRAIL...)

1970s. First laser interferometers as gravitational-wave detectors

Historical Background: nobel prize

• 1974. *PSR1913+16* discovered by Russel Hulse and Joseph Taylor:

First indirect evidence of the existence of gravitational waves

• 1993. Hulse and Taylor were awarded the Nobel Prize in Physics

Direct measurement of gravitational waves...

Ground based GW detector network

Ground based interferometer detectors sensitivity

Sensitivity of interferometric GW detectors

GW detector at AEI Hannover: GEO600

LISA: Laser Interferometer Space Antenna

- Gravitational wave detector in **space** (ESA and NASA collaboration)
- Sensitivity at low frequencies: $10^{-4} \text{ Hz} \cdots 0.1 \text{ Hz}$
 - Inaccessible for ground-based detectors (local disturbances...)
- Interferometer arm: 5 Million km $\pm 1 \% \rightarrow h = 2 \frac{\delta L}{I}$
- Guaranteed sources of gravitational waves
- Launch: 2018

Group AEI Hannover, Germany

The LISA orbit

Three satellites in equilateral triangle formation, following the earth around the sun at a distance of 50 million kilometers.

One LISA satellite

Each satellite is equipped with two free-floating test masses and two telescopes aligned (in 60 $^{\circ}$) towards the other two satellites.

Optical bench and Drag-Free Test Mass

- Basic measurement: fluctuations of one LISA arm.
 - LISA arm: 5 million km (line of sight) between two test masses.
- Two arms combined → Michelson interferometer → GW detector.

LISA Group AEI Hannover, Germany

LISA strain sensitivity $\mathbf{h} = 10^{-23}$ at 1 mHz

- One year integration time and SNR = 5 \Rightarrow h = 10^{-23}
- Comparable to ground based detectors at high frequencies

LISA Group AEI Hannover, Germany http://www.lisa.aei-hannover.de/

LISA main sources

- Binary systems (from SMBH to white dwarfs)
- Coalescence and mergers
- EMRI extreme mass ratio inspirals
- Backgrounds

<u>g</u>

LISA main technologies

Optical pathlength sensitivity:

$$\widetilde{\delta s}=$$
40 pm $/\sqrt{ ext{Hz}}$ at 1 mHz.

Test masses drag-free level: δ

$$a=3{ imes}10^{-15}\,{
m m\cdot s^{-2}}/{\sqrt{
m Hz}}$$
 at 1

mHz.

LISA pathfinder mission (LPF)

Demonstration of LISA technologies in space

- Two LISA-like TMs inside one satellite ⇒ one small "LISA-arm".
- Interferometry between Test-Masses with picometer precision.
- Drag Free System for Test Masses with femtonewton stability.
- Micronewton thrusters for drag free control of the satellite.
- LISA Technology Package (LTP): European experiment (this talk).

Felipe Guzmán Cervantes

The LISA technology package (LTP) core assembly

Two test masses inside their vacuum enclosures and interferometer between them.

LISA Group AEI Hannover, Germany

Felipe Guzmán Cervantes

The LTP core assembly

Two test masses inside their vacuum enclosures and interferometer

LTP interferometric concept

The LTP interferometer monitors test masses position fluctuations and alignment.

Felipe Guzmán Cervantes

LTP optical bench engineering model (EM)

Leibniz Universität Hannove

http://www.lisa.aei-hannover.de/

http://www.aei-hannover.de/

Space qualification of the EM optical bench

LISA Group AEI Hannover, Germany

Leibniz Universität Hannover

Felipe Guzmán Cervantes

LPF interferometry concept: heterodyne Mach-Zehnder

Leibniz Universität Hannover http://www.aei-hannover.de/

ISA Group AEI Hannover, Germany

LPF interferometry concept: "reference - measurement"

Common-mode noise subtraction

- Pathlength fluctuations from modulation bench present in both interferometers (Reference (R) and Measurement (M)).
- LTP Main output: $\varphi_{\rm R} \varphi_{\rm M} \Rightarrow$ fluctuations cancel.

LISA Group AEI Hannover, Germany http://www.lisa.aei-hannover.de/

Felipe Guzmán Cervantes

LTP Optical layout: reference interferometer

Felipe Guzmán Cervantes

LTP Optical layout: X1 interferometer

Felipe Guzmán Cervantes

LTP Optical layout: X12 interferometer

Felipe Guzmán Cervantes

LTP Optical layout: frequency interferometer

Phasemeter

- FPGA based 20 channel
- Output per quadrant: dc_k, y_k, z_k

•
$$c_k = z_k + iy_k$$

- For each QPD:
 - $DC_n = \sum_k dc_k$, $c_n = \sum_k c_k$

Leibniz Universität Hannover

http://www.lisa.aei-hannover.de/

http://www.aei-hannover.de/

Differential Wavefront Sensing

LISA Group AEI Hannover, Germany

LTP interferometry test-bed: performance milestones

Current performance with AEI phasemeter and EM optical bench.

DWS alignment sensitivity

Felipe Guzmán Cervantes

Felipe Guzmán Cervantes

Felipe Guzmán Cervantes

Felipe Guzmán Cervantes

Felipe Guzmán Cervantes

LPF Engineering model of the Laser and Modulation Bench

Starting with...

Starting with...

Starting with...

Support equipment

Engineering Models inside Vacuum chamber

Ground support equipment for Laser Assembly

- Cubic chamber for Engineering and Flight Models
- Two stage clean room tent for unpacking

Current research activities

IISA Pathfinder:

- Prepartion of test-bed for engineering and flight hardware testing.
- Testing of experiment procedures and optical components.
- LTPDA: Development of software tool for mission's data analysis.
- LISA:
 - EOM phase fidelity.
 - Fiber reciprocity.
 - Weak-light phase-offset lock.
 - Point-ahead angle mechanism (PAAM).
 - LISA TM optical readout.
 - Phasemeter.

LTP interferometer performance

Angular noise subtraction

Felipe Guzmán Cervantes

Laser frequency noise subtraction: free-running laser

Laser frequency noise subtraction: rest noise

Inertial Sensor beam clipping

10-8

10-12

10-13

10

no jitter

Felipe Guzmán Cervantes

Initial TM alignment

- DMU/OBC tasks separated
- asynchronous data link

Leibniz Universität Hannover http://www.aei-hannover.de/

alignment loop closed

LISA Group AEI Hannover, Germany http://www.lisa.aei-hannover.de/

Felipe Guzmán Cervantes

Experimental Demonstration

LISA Technology Package data analysis: LTPDA

- Development of software tool for mission data analysis.
- ESA verification procedure starting now.
- Based on the concept of analysis objects:
 - structure containing data, history, information on provenance of the object.
 - ease data analysis handling: reproducibility and traceability of results.

LTPDA

- Developed as MATLAB toolbox using object-oriented programming.
- Collection of many very useful and smart algorithms for data analysis.
- Free software for data anylisis for download: http://www.lisa.aei-hannover.de/ltpda

Fiber reciprocity

- Fiber link is current baseline for LISA
- Aim is to investigate non-reciprocal pathlenght noise

S/W PM

Fiber reciprocity

• Sensitivity of the setup

- Length measurement and fiber reciprocity reach comparable level
- Sensitivity limited by mechanical stability of setup ⇒ next step: Bonding!

Point-ahead angle (PAA)

- Rotation axis 60 degrees inclined to the ecliptic plane
- Nutation of the rotation axis results in significant out-of-plane PAA requiring active compensation

Beam divergence with 30 cm - 40 cm telescope:

"Strap-down" Optical Bench with former backside ifo as heterodyne optical readout and Karsten's frequency swapping drawn by G Heinzel AEI 2005/05/19

Leibniz Universität Hannover http://www.aei-hannover.de/

LISA Group AEI Hannover, Germany http://www.lisa.aei-hannover.de/

Point-ahead angle mechanism tests

 Adapting the existing frequency stabilisation setup at AEI Hannover for testing longitudinal performance of PAAMs:

- Bonded components on a Zerodur Baseplate.
- Thermally stable vacuum system ($10^{-5} \text{ K}/\sqrt{\text{Hz}}$ @ 3 mHz).
- Accuracy << 1 pm longitudinal resolution at 1 mHz.
- Angular jitter readout via differential wave front sensing.

LISA Group AEI Hannover, Germany http://www.lisa.aei-hannover.de/

Real-time wavefront measurement device

- Wavefront quality in LISA of great importance for sensitivity
- Magnification of wavefront distortions over 5 million km
- Device developed for LPF developments: based on heterodyne phase detection

Example of measured wavefronts

- Approximately 6-7 phasefront measurements per second
- Measured accuracy to $3 \, {
 m mrad} pprox \lambda/2000$
- Instrument is currently being used for manufacture flight models of LPF fiber injectors and optical bench

Summary

- LISA Pathfinder is a great test facility for LISA technology.
- Topics such as TM angular noise, on-orbit auto-alignment and LISA local interferometry can be tested.
- LISA interferometry is much more complex: point-ahead angle mechanism, laser frequency noise, wavefront distortions
- Still a long way to go but we're getting there...

Thanks very much!

