Albert Lazzarini

22 May 1995

Outline

- Documentation
- Progress on LIGO Interfaces
- Trade Studies and Analyses
- Modeling and Data Analysis
- Summary

Documentation

- LIGO Science Requirements Document (SRD)
 - >> Preliminary version completed 15 May
 - >> Available for internal review
 - >> Document addresses:
 - LIGO Scientific Mission and Purpose
 - Detector Definition & Configuration
 - Initial and Ultimate Sensitivity Goals
 - Facilities Extensibility Requirements
 - Observational Modes and Availabilities
 - Data Formats and Data Products
 - Enabling Research and Long-Term Goals

Documentation (cont.)

- LIGO System Specification
 - >> In progress
 - >> Ongoing Design Reviews within Detector Group are providing definitions which will be incorporated within the System Specification
 - Xey element of the specification will be the interferometer baseline optical configuration -- being worked on at present.
- Technical Notes
 - >> LIGO coordinate system for facilities construction
 - >> LIGO vibration and acoustic noise level requirements during operation
 - >> Derivation of core optics coating specifications from requirements
 - Feasibility study of fabricating dual-wavelength core optics coatings for either 0.5145 μm (Ar⁺) or 0.532 μm (2X Nd:YAG) laser lines

Interfaces

- System Interfaces have work in progress:
 - >> Vacuum Equipment Beam Tube mechanical interfaces defined
 - >> Vacuum Equipment Detector signal interfaces defined
 - >> Vacuum Equipment Facility interfaces being defined
 - >> Facilities Detector interfaces in progress
 - >> Beam tube Detector interfaces in progress
 - >> Beam tube Facilities interfaces in progress

Physical Interfaces Among LIGO Systems

Interface Classes & Types

INTERFACE CLASSES

Түре	MECHANICAL	ELECTRICAL	THERMAL	GLOBAL
1	FOOTPRINT EXCLUSION OVERHEAD CLEARANCES	POWER	CONDUCTION	OPTICAL SCATTERING
2	CONNECTIONS APERTURES SUPPORTS	SIGNAL	RADIATION	VACUUM PRESSURE BURSTS OUTGASSING LEAKS
3				VIBRATION/ACOUSTIC
4				CONTAMINATION VOLATILES PARTICULATES
5				EMI/RFI
6				SCHEDULE AVAILABILITY

Trade Studies and Analyses

- LIGO Interferometer Optical Configuration
 - >> Review baseline parameters:
 - number and locations of carrier/subcarriers
 - pick-off locations & servo topology
 - >> Parameter optimization:
 - mirror radii of curvature
 - arm asymmetry
 - reflectances
 - servo gains/frequency response
 - >> Modeling techniques
 - FFT propagation
 - Modal decomposition

Trade Studies and Analyses (cont.)

- High reflectance coatings specifications and tolerancing
 - Phase fluctuations must be controlled to $\lambda/800$
 - Metrology issues -- center wavelength nonuniformity measurements to infer phase nonuniformities
- Coating designs for dual wavelength operation
 - Demonstrated the feasibility of using coatings which provide same performance for both Ar⁺ (0.5145 μm) and Nd:YAG (0.532 μm)
 - Permits LIGO to switch from Ar⁺ to Nd:YAG when solid state laser technology is available without re-fabricating core optics
 - AR coatings are the most sensitive
 - Caveats: A few mirrors need re-coating; surface electric field strength effects need to be understood; coating uniformity requirements are stringent

Trade Studies and Analyses (cont.)

- Beam Tube baffle design
 - >> Baffling conceptual design review held jointly with European groups (GEO 600 & VIRGO)
 - Greater attenuation of stray scattered light required than original baffle design provided
 - >> Presently exploring different baffling materials and baffle designs
 - Oxidized cold rolled stainless
 - Martin Black (outgassing concerns)
 - Black glass (Breault Research Organiztion's recommendation mechanical design concerns)
 - >> Effort to be completed by December 1995 in order to support scheduled detector PDRs

LIGO Modeling and Simulation Environment

- Candidate environments considered
 - >> Khoros, AVS, Grid, SIESTA, Lab View/CVI
- Factors considered:
 - >> Modular vs. Monolithic Coding Environment
 - >> Powerful software modules
 - >> Module can be written by C/Fortran/Mathematica/MATLAB
 - >> Automated Make, Graphical User Interface (GUI) and Man(on-line help)
 - Graphical Programming Interface
 - Good graphics viewer
 - >> Shared memory, Distributed processing
 - >> User recommendations

LIGO Modeling and Simulation Environment (cont.)

- AVS (Advanced Visual System) based framework Modular, GUI, Graphics
- Start building LIGO modeling framework
 - >> Define the structure components and information flow
- Port existing codes into AVS framework
 - >> Integration of exisiting codes into more powerful modules
 - >> Better GUI, data visualization, and maintenance capabilities
- Progressive modeling of details--modules enhanced as hardware designs evolve
- Develop applications within AVS for general use by project scientists and engineers
 - >> Performance predictions, trade studies, error budget allocation
 - >> Pseudo-data production and development of data analysis tools

LIGO Modeling and Simulation Environment (cont.)

40m Data Acquisition & Analysis - presently using "Sneaker-Net"

Near-term goal -- automated configuration at 40m with AVS

Solution transferrable to LIGO configuration

Summary

- Key LIGO system issues being addressed;
 - Working closely with all LIGO system groups (Detector, Vacuum Equipment, Beam Tube, Facilities)
 - >> Convening working groups to address interface issues
 - >> Active participation in weekly R&D and Detector meetings
 - >> Quarterly meetings in conjunction with science group to review project status, discuss issues and propose approaches
- Developing a LIGO end-to-end modeling environment withnear-term support to 40m facility
- Group presently includes two scientists; planning to bring in at least one engineer with expertise in mechanical, control & electronic systems to expand group resources and to provide better support to all LIGO systems groups.

