LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LIGO-G950058-00	-D	-
Docume Argon and Nd:YAC information		
	Titl	
David Shoemaker	100	
	Autho	

This is an internal working note of the LIGO Project

Massachusetts Institute of Technology

LIGO Project - MS 20B145

Cambridge, M 02139

Phone (617) 253 4824

Nd:YAG Technical 'high points'

Recapitulation of significant differences:

- layout of laser configuration
- summary tables
- R&D effort
- status of other GW/laser groups

Laser Technical Summary

parameter/part	Nd:YAG Merit/ <i>Demerit</i>	Argon Merit/ <i>Demerit</i>
power	initial power available, future power assured (20-47 W now) ~2x power required for given sensitivity	initial power available; no further increases probable
efficiency	several 10 ⁻²	10-4
mean time before failure	10,000 MTBF (commercial specification) 10-20,000 MTBF (Byer experience)	8000 MTBF (commercial specification) ~2000 MTBF (LIGO experience)
failure mode	~20% reduction in power	no light
raw frequency noise, 90 Hz	$10^2 \text{ Hz}/\sqrt{\text{Hz}}$	$10^4 \text{ Hz}/\sqrt{\text{Hz}}$
raw intensity noise, 90 Hz	$10^{-6} \delta I/I 1/\sqrt{\text{Hz}}$	$10^{-5} \delta I/I 1/\sqrt{\text{Hz}}$
raw intensity noise meets ~10 mW shot noise	3 MHz	~5 MHz
beam jitter	not yet characterized; reported to be small (comparable to Argon?)	characterized
engineering status	~\$1M+ 1 year development	ready
future development	growing market	static to declining market

Modulator Technical Summary

parameter/part	Nd:YAG Merit/ <i>Demerit</i>	Argon Merit/ <i>Demerit</i>
power handling	to 20 watts	to 5 watts
sensitivity	210 volts/ π , 1.06 μ m	$1000 \text{ volts/}\pi$, 514 nm
frequency range	to 100 MHz	to 60 MHz (in pairs)
engineering status	commercial item	commercial item

Core Optics Technical Summary

parameter/part	Nd:YAG Merit/ <i>Demerit</i>	Argon Merit/ <i>Demerit</i>
mirror size	back mirror >27 cm	<25 cm
figure requirements (sample requirement)	$Argon * \sqrt{2}$ $= \lambda_{514} / 424$	$\lambda_{514}/600$
required coating uniformity (random errors)	0.1%	0.1%
substrate scatter	1-2 ppm/cm	10-20 ppm/cm
substrate absorption	1-2 ppm/cm	1-2 ppm/cm
substrate homogeneity	same to 2x better	
coating absorption+scatter	6 ppm	~20 ppm (1.5 reported)
metrology	commercial	special interferometer must be fabricated
baffle backscatter (SS)	2x smaller	
baffle reflectivity (SS)	2x larger	
thermal focussing	same	
contamination	no experience	
FFT performance estimate	~10% better	

Suspension Technical Summary

parameter/part	Nd:YAG Merit/ <i>Demerit</i>	Argon Merit/ <i>Demerit</i>
end FP mirror	possible additional design type required	

Photodetector Technical Summary

parameter/part	InGaAs Merit/ <i>Demerit</i>	Si (Argon or YAG) Merit/Demerit
power handling	150 mA	15 mA
quantum efficiency	80-90%	60-70%
surface diameter	0.5-2 mm	10 mm or greater
spatial non-uniformity	TBD	<10 ⁻³
capacitance	low	30 pf/15pf
engineering status	in development	commercial

FFT Optics model results for $1.06 \mu m$

Parameter	Nd:YAG	Argon
Laser wavelength	1.06 µm	532 nm
Mirror radii: recycling, flats	11.5 cm	12.5 cm
beamsplitter	9.9 cm	12.5 cm
FP back mirrors	14.0 cm	12.5 cm
Laser power (at recycling mirror)	5 W	2.5 W
Assumed loss/bounce on all mirrors	100 ppm	100 ppm
Optimum recycling gain	34	31
Contrast defect $(1-C) \sim 2(I_{\min}/I_{\max})$	3×10 ⁻⁴	1.3×10 ⁻³
Optimum modulation	0.34	0.47
Photodetector power	260 mW	240 mW
h (below cavity pole frequency)	$5.7 \times 10^{-24} / (\sqrt{\text{Hz}})$	$6.2 \times 10^{-24} / (\sqrt{\text{Hz}})$

R&D Activities

R&D goals for Nd:YAG work:

- verify laser, mirror, etc. performance
- integration issues
- gain familiarity with infrared light
- (~500 mW as useful as 10 W for most tests)

Phase Noise Interferometer:

- repeat performance test as for Argon
- probably follows de-bugging with Argon; streamlines path
- could be a mid-stream switch
- guess of 9 months if at end, and preparations made

40 m Interferometer:

- test of integration (as for PSL)
- put in test plan 'when convenient' (displaces/delays other work)
- also roughly 9 months

OTF:

- tests of mirrors
- contamination
- frequency stabilization

Activity of other groups

Stanford

- basic master laser design (NPRO)
- various high-power diode-pumped designs
- interest in LIGO as User Group, Helper

VIRGO

- delivery of 10 W slave in August
- integration with master in October
- interested in collaboration (serial #2)

GEO

- independent master design
- 20 W rod demonstrated
- frequency and power stabilization underway

TAMA

- novel rod at 26 W
- excellent frequency stabilization effort
- low-loss mirrors demonstrated

AIGO

• no specifics

Summary of summary

Second look at Nd:YAG and 1064 nm:

- laser looks close to ready for our needs
- other bits and pieces (modulators, photodetectors) ok
- optics shows fewer advantages for 1064 nm than anticipated
 - > Ar mirrors improving
 - > both better than initial LIGO needs
- several disadvantages (baffling, mirror size, lack of familiarity)
- still looks like a sure path for enhanced LIGO (2x to 10x power)